
www.manaraa.com

www.manaraa.com

APPLICATION-DRIVEN
ARCHITECTURE SYNTHESIS

www.manaraa.com

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

VLSI, COMPUTER ARCHITECTURE AND
DIGITAL SIGNAL PROCESSING

Consulting Editor
Jonathan Allen

Other books in the series:

HOT-CARRIER RELIABILITY OF MOS VLSI CIRCUITS, Y. leblebici, S. Kang
ISBN: 0-7923-9352-X

MOTION ANALYSIS AND IMAGE SEQUENCE PROCESSING, M. 1. Sezan, R. Lagendijk
ISBN: 0-7923-9329-5

mGH-LEVEL SYNTHESIS FOR REAL-TIME DIGITAL SIGNAL PROCESSING: The
Cathedral-II Silicon Compiler, 1. Vanhoof, K. van Rompaey, 1. Bolsens, G. Gossens, H. DeMan

ISBN: 0-7923-9313-9
SIGMA DELTA MODULATORS: Nonlinear Decoding Algorithms and Stability Analysis, S.
Hein, A. Zakhor

ISBN: 0-7923-9309-0
LOGIC SYNTHESIS AND OPTIMIZATION, T. Sasao

ISBN: 0-7923-9308-2
ACOUSTICAL AND ENVIRONMENTAL ROBUSTNESS IN AUTOMATIC SPEECH
RECOGNITION, A. Acero

ISBN: 0-7923-9284-1
DESIGN AUTOMATION FOR TIMING-DRIVEN LAYOUT SYNTHESIS, S. S. Sapalnekar,
S. Kang

ISBN: 0-7923-928!-7
DIGITAL BiCMOS INTEGRATED CIRCUIT DESIGN, S. H. K. Embadi, A. Bellaouar, M. I.
Elmasry

ISBN: 0-7923-9276-0
WAVELET THEORY AND ITS APPLICATIONS, R. K. Young

ISBN: 0-7923-9271-X
VHDL FOR SIMULATION, SYNTHESIS AND FORMAL PROOFS OF HARDWARE, J.
Mermel

ISBN: 0-7923-9253-1
ELECTRONIC CAD FRAMEWORKS, T. J. Barnes, D. Harrison, A. R. Newton, R. L. Spickelmier

ISBN: 0-7923-9252-3
ANATOMY OF A SILICON COMPILER, R. W. Brodersen

ISBN: 0-7923-9249-3
FIELD-PROGRAMMABLE GATE ARRAYS, S. D. Brown, R. J. Francis, 1. Rose, S. G. Vranesic

ISBN: 0-7923-9248-5
THE SECD MICROPROCESSOR, A VERIFICATION CASE STUDY, B. T. Graham

ISBN: 0-7923-9245-0
mGH LEVEL SYNTHESIS OF ASICs UNDER TIMING AND SYNCHRONIZATION
CONSTRAINTS, D. C. Ku, G. De Micheli

ISBN: 0-7923-9244-2
FAULT COVERING PROBLEMS IN RECONFIGURABLE VLSI SYSTEMS, R. Libeskind
Hadas, N. Hassan, J. Cong, P. McKinley, C. L. Liu

ISBN: 0-7923-9231-0
VHDL DESIGNER'S REFERENCE, J-M. Berge, A. Fonkoua. S. Maginol, 1. Rouillard

ISBN: 0-7923-1756-4

www.manaraa.com

APPLICATION-DRIVEN
ARCHITECTURE SYNTHESIS

edited by

Francky Catthoor
Lars Svensson

IMEC, Leuven, Belgium

SPRINGER-SCIENCE+BUSINESS MEDIA, LLC

www.manaraa.com

Library of Congress Cataloging-in-Publication Data

A C.I.P. Catalogue record for this book is available from
the Library of Congress.

ISBN 978-1-4613-6425-2 ISBN 978-1-4615-3242-2 (eBook)
DOI 10.1007/978-1-4615-3242-2

Copyright 0 1993 Springer Science+Business Media New York
Originally published by Kluwer Academic Publishers in 1993
Softcover reprint ofthe hardcover 1st edition 1993

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system or transmitted in any form or by any means, mechanical,
photo-copying, recording, or otherwise, without the prior written permission of
the publisher, Springer-Science+Business Media, LLC.

Printed on acid-Jree paper.

www.manaraa.com

Preface

CONTENTS

IX

1 Application-driven synthesis methodologies for
real-time processor architectures 1
1 Problem description 1
2 State-of-the-art and beyond 3
3 Contribution of this book 4
4 System specification model 7
5 Synthesis of array processors 9
6 Synthesis of multiplexed processors 12
7 Chapter overview 15
8 Conclusion 18
Fleferences 18

2 Behavioral specification for synthesis 23
1 Introduction 23
2 The ASCIS data flow graph 25
3 Input specification languages 37
4 Conclusion 43
Fleferences 44

3 Formal methods for solving the algebraic path
problem 47
1 Introduction 47
2 The algebraic path problem 48
3 Pioneering systolic APP designs 50
4 Advanced systolic APP designs 52
5 Extending synthesis methods 55

v

www.manaraa.com

VI ApPLICATION-DRIVEN ARCHITECTURE SYNTHESIS

6 Partitioning issues
7 Conclusion
References

62
66

66

4 HiFi: from parallel algorithm to fixed-size VLSI
processor array 71
1 Introduction 71
2 Design philosophy 73
3 Algorithmic specification 74

4 Architecture model 76
5 Design trajectory 77
6 Fixed-size architecture design 88

7 Conclusion 92

References 92

5 On the design of two-level pipelined processor
arrays 95
1 Introduction 95
2 Transformation of nested loops to DREs 98
3 Word-level array design 102
4 Bit-level array design 108
5 Conclusion 114
References 116

6 Regular array synthesis for image and video
applications 119
1 Introduction 119
2 A design script 120
3 A real-life video application 121
4 Deriving the initial description 123

5 Re-indexing transformations 124
6 Localizing transformations 125
7 Space-time mapping 134
8 Conclusion 140
References 140

www.manaraa.com

Contents VB

7 Memory and data-path mapping for image and
video applications 143
1 Introduction 143

2 High-level memory management 146
3 High-level data-path mapping 156

4 Conclusion 162

References 162

8 Automatic synthesis for mechatronic applications 167
1 Introduction 167

2 System overview 168

3 Application domain and target architecture 172

4 Behavioral synthesis transformations 176

5 Structural synthesis 183

6 Results 187
7 Conclusion 189

References 189

9 Synthesis for control-How-dominated machines 191
1 Introduction 191
2 Integration with existing design environments 193
3 An overview of AMICAL 197
4 Mixing manual and automatic design 202
5 A design example 204
6 Conclusion 209
References 209

10 Controller synthesis and verification 211
1 Introduction 211
2 Architecture selection 213

3 Architecture implementation 218

4 Formal verification of finite state machines 223

5 Verification of implementation 228
6 Conclusion 230
References 230

www.manaraa.com

Vlll

Index

ApPLICATION-DRIVEN ARCHITECTURE SYNTHESIS

233

www.manaraa.com

PREFACE

The main intention of this book is to give an impression of the way current
research in high-level and behavioral synthesis for real-time architectures is
going. The focus lies especially on domains where application-specific VLSI
solutions are attractive, such as significant parts of audio, telecom, instrumen
tation, speech, robotics, medical and automotive processing, image and video
processing, TV, multimedia, radar, and sonar processing.

The material in this book is based on work in the context of two research
projects, ASCIS (Architecture Synthesis for Complex Integrated Systems) and
NANA (Novel parallel Algorithms for New real-time Architectures), both spon
sored by the ESPRIT program of Directorate XIII of the European Commission.
The chapters are partly based on material presented at the final project work
shops, which took place at IMEC in Leuven, Belgium, on the 29th and 30th of
April, 1992, marking the completion of three successful years of project coop
eration.

ASCIS and NANA were among the first of the ESPRIT Basic Research Actions.
These are different from other ESPRIT projects in two ways: the foreseen indus
trial application of the results may be as far as five to seven years in the future,
and some of the financial arrangements make it easier for universities to par
ticipate. For a project to gain ESPRIT sponsorship, it must have partners from
at least two different European countries. ASCIS and NANA both met this re
quirement with ease. The partners of the NANA project were: Delft University
of Technology, the Netherlands; Ecole Normale Superieure de Lyon (ENSL),
France; Inter-university Micro-Electronic Center (IMEC), Leuven, Belgium;
IRISA, Rennes, France; and Katholieke Universiteit Leuven, Belgium. The
ASCIS partners were: Eindhoven University of Technology, Eindhoven, The
Netherlands; IMEC, Leuven, Belgium; INPG/TIM3, Grenoble, France; Tech
nical University of Darmstadt, Darmstadt, Germany; Technical University of
Denmark, Lyngby, Denmark; Patras University, Patras, Greece; and Lund Uni
versity, Lund, Sweden. With seven partners in seven countries, ASCIS in par
ticular was a good example of a pan-European research project.

ix

www.manaraa.com

x ApPLICATION-DRIVEN ARCHITECTURE SYNTHESIS

The goal of the hardware synthesis work within these projects has been to
contribute design methodologies and synthesis techniques which address the
design trajectory from real behavior down to the RT-level structural specifica
tion of the system. In order to provide complete support for this synthesis
trajectory, many design problems must be tackled. We do not claim to cover
the complete path, but we do believe we have contributed to the solution of a
number of the most crucial problems in the domains of specification and synthe
sis. We therefore expect this book to be of interest in academia; not for detailed
descriptions of the research results-these have been published elsewhere-but
for the overview of the field and a view on the many important but less widely
known issues which must be addressed to arrive at industrially relevant results.

The ASCIS and N ANA projects have also been application-driven from the start,
and the book is intended to reflect this fact. The real-life applications that have
driven the research are described, and the impact of their characteristics on the
methodologies is assessed. We therefore believe that the book will be of interest
to senior design engineers and CAD managers in industry, who wish either to
anticipate the evolution of commercially available design tools over the next few
years, or to make use of the concepts in their own research and development.

The projects' emphasis on basic research notwithstanding, it must not be for
gotten that ESPRIT is a program which has the goal to support industry through
research. It is therefore important to note that some of the ASCIS and N ANA

results already have generated interest from European CAD and systems in
dustry. The continued research by the partners, some of it in the context of
other ESPRIT projects, obviously also benefits from the results described in this
book. In addition, a follow-up project for NANA (NANA-2) has been running
for more than a year, and a proposal for an ASCIS follow-up is being prepared.

It has been a pleasure for us to work within the projects. The coordination of
the work has meant many hours on the phone, in airplanes and airports, and
behind computer keyboards. However, we consider ourselves amply rewarded:
in addition to learning many new things about behavioral synthesis and related
issues, we have also developed close connections with excellent people at each
of the partner sites. Moreover, the pan-European aspect has allowed us to
come in closer contact with research groups with a different background and
"research culture," which has led to very enriching cross-fertilization.

www.manaraa.com

Preface Xl

We would like to use this opportunity to thank the many people who have
helped make these projects successful, and to express our appreciation of their
contributions:

• The main authors of the chapters of this book, who were among the
most active participants in the synthesis-related technical work within the
projects.

• The members of the Scientific Advisory Boards for the projects, whose di
rection and high-level steering has been an important contribution to their
success and indirectly to the results in this book: Prof. Bernard Courtois,
Prof. Hugo De Man, Prof. Patrick Dewilde, Prof. Jochen Jess, Prof. Man
fred Glesner, Prof. Costas Goutis, Prof. Ole Olesen, Prof. Lars Philipson,
Prof. Patrice Quinton, Prof. Yves Robert, and Prof. Joos Vandewalle.

• Our Project Officer at the European Commission, Dr. Klaus Wolcken, for
his support and enthusiasm.

• Our technical and administrative coordination staff at IMEC, for their
support with the financial and practical details of project management
that researchers are typically hopelessly inept at: Patrick Pype, Joost
Deseure, and Annemie Stas.

• Research associates in many countries, who contributed to the progress of
these projects; in particular, we wish to mention Per Andersson, Florin Bal
asa, Abdelhamid Benaini, Henri-Pierre Charles, Gjalt De Jong, Ed Depret
tere, Michael Held, Jiirgen Herpel, Thomas Hollstein, Holger Jiirgs, Jian
Jin Li, Shen Li-Sheng, Fang Longsen, Christophe Mauras, Serge Miguet,
Henrik Pallisgaard, Wim Philipsen, Yannick Saouter, Stephane Ubeda,
AIle-Jan van der Veen, Sabine Van Huffel, Steven Van Leemput, Ingrid
Verbauwhede, and Claus Vielhauer.

• Last but not least: Jan Rosseel, whose Jffi.Tp}(expertise proved invaluable
in the production of this book.

We finally hope that the reader will find the book useful and enjoyable, and
that the results presented will contribute to the continued progress of the field
of high-level and behavioral synthesis.

Leuven, Belgium

Santa Monica, California

Francky Catthoor

Lars Svensson

www.manaraa.com

Michael Birbas
VLSI Design Lab.
Dept. of Electrical Engineering
University of Patras
Patras 26110, Greece

Jens P. Brage
Dept. of Computer Science
Technical University of Denmark
Building 344
DK2800 Lyngby, Denmark

Francky Catthoor
VLSI Systems Design Methodology Dept.

IMEC
Kapeldreef 75
B3001 Leuven, Belgium

Bernard Courtois
TIM3/INPG
46 av. Felix Viallet
38031 Grenoble Cedex, France

Alain Darte
Laboratoire de I'Informatique

du Parallelisme-TIM3
Ecole Normale Superieure de Lyon
46, Allee d'Italie
69364 Lyon Cedex 07, France

Hugo De Man
VLSI Systems Design Methodology Dept.
IMEC
Kapeldreef 75
B3001 Leuven, Belgium

CONTRIBUTORS

Ed Deprettere
Delft University of Technology
Mekelweg 4
2600 GA Delft, The Netherlands

Patrick Dewilde
Delft University of Technology
Mekelweg 4
2600 GA Delft, The Netherlands

Frank Franssen
VLSI Systems Design Methodology Dept.
IMEC
Kapeldreef 75
B3001 Leuven, Belgium

Werner Geurts
VLSI Systems Design Methodology Dept.
IMEC
Kapeldreef 75
B3001 Leuven, Belgium

Manfred G lesner
Technische Hochschule Darmstadt
FG Mikroelektronische Systeme
Karlstr. 15
D-6100 Darmstadt
Germany

Costas Goutis
VLSI Design Lab.
Dept. of Electrical Engineering
University of Patras
Patras 26110, Greece

www.manaraa.com

xiv

Peter Held
Delft University of Technology
Mekelweg 4
2600 GA Delft, The Netherlands

Geert Janssen
Dept. of Electrical Engineering
Eindhoven Univ. of Technology
P.O. Box 513
5600 MB Eindhoven, The Netherlands

Ahmed Amine Jerraya
TIM3/INPG
46 av. Felix Vianet
38031 Grenoble Cedex, France

Jochen Jess
Dept. of Electrical Engineering
Eindhoven Univ. of Technology
P.O. Box 513
5600 MB Eindhoven, The Netherlands

Efstathios Kyriakis-Bitzaros
VL81 Design Lab.
Dept. of Electrical Engineering
University of Patras
Patras 26110, Greece

Herve Le Verge
IRISA-CNRS-INRIA
Campus de Beaulieu
35042 Rennes Cedex, France

Jan Madsen
Dept. of Computer Science
Technical University of Denmark
Building 344
DK2800 Lyngby, Denmark

Kevin O'Brien
TIM3/INPG
46 av. Felix Vianet
38031 Grenoble Cedex, France

Ole Olesen
Dept. of Computer Science
Technical University of Denmark
Building 344
DK2800 Lyngby, Denmark

Vasilis Paliouras
VLSI Design Lab.
Dept. of Electrical Engineering
University of Patras
Patras 26110, Greece

Inhag Park
TIM3/INPG
46 av. Felix Vianet
38031 Grenoble Cedex, France

Lars Philipson
Dept. of Compo Engineering
Lund University
P.O. Box 118
S-221 00 Lund, Sweden

Peter Pochmiiller
Technische Hochschule Darmstadt
FG Mikroelektronische Systeme
Karlstr. 15
D-6100 Darmstadt
Germany

Patrice Quinton
IRISA-CNRS-INRIA
Campus de Beaulieu
35042 Rennes Cedex, France

Kenny Ranerup
Dept. of Compo Engineering
Lund University
P.O. Box 118
8-221 00 Lund, Sweden

www.manaraa.com

Tanguy Risset
Laboratoire de J'Informatique

du Parallelisme-TIM3
Ecole Normale Superieure de Lyon
46, Allee d'Italie
69364 Lyon Cedex 07, France

Yves Robert
Laboratoire de l'Informatique

du Parallelisme-TIM3
Ecole Normale Superieure de Lyon
46, Allee d'Italie
69364 Lyon Cedex 07, France

Jan Rosseel
VLSI Systems Design Methodology Dept.
IMEC
Kapeldreef 75
B3001 Leuven, Belgium

Dimitris Soudris
VLSI Design Lab.
Dept. of Electrical Engineering
University of Patras
Patras 26110, Greece

Thanos Stouraitis
VLSI Design Lab.
Dept. of Electrical Engineering
University of Patras
Patras 26110, Greece

Lars Svensson
VLSI Systems Design Methodology Dept.
IMEC
Kapeldreef 75
B300i Leuven, Belgium

J os van Eijndhoven
Dept. of Electrical Engineering
Eindhoven Univ. of Technology
P.O. Box 513
5600 MB Eindhoven, The Netherlands

xv

Michael van Swaaij
VLSI Systems Design Methodology Dept.
IMEC
Kapeldreef 75
B3001 Leuven, Belgium

Paul Wielage
Delft University of Technology
Mekelweg 4
2600 GA Delft, The Netherlands

Norbert Wehn
Technische Hochschule Darmstadt
FG Mikroelektronische Systeme
Karlstr. 15
D-6100 Darmstadt
Germany

Klaus Wolcken
Commission of the E.C.
Rue de la Loi 200
B1049 Brussels, Belgium

www.manaraa.com

APPLICATION-DRIVEN
ARCHITECTURE SYNTHESIS

www.manaraa.com

1
APPLICATION-DRIVEN

SYNTHESIS METHODOLOGIES
FOR REAL-TIME PROCESSOR

ARCHITECTURES
Francky Catthoor1 , Lars Svensson1

Klaus Wolcken2

1[MEC, Leuven
2 Commission of the E. C., Brussels

ABSTRACT

In this chapter, we present an overview of the objectives and key achieve
ments of the work described further in the book. Our topic is the synthesis of
application-specific architectures and their realizations, targeted to microelec
tronic products involving real-time processing. Engineers who design real-time
systems experience two classes of difficulties. One is methodical: there is no
good design strategy to bring a concept to an effective realization. The other
is practical: it is hard to produce a cost-effective, customized architecture for
a given throughput or latency. In the course of the last four years, the con
tributing authors of this book have cooperatively addressed these bottlenecks.
We propose a set of solutions that form part of a complete methodology for the
target domain of dedicated processors for real-time systems. All the work has
been driven by real-life case studies. To demonstrate our methods, a number of
these realistic examples are treated in the subsequent chapters. The work has
been performed in the context of two highly successful ESPRIT basic research
actions: ASCIS ("Architecture Synthesis for Complex Integrated Systems") and
NANA ("Novel parallel Algorithms for New real-time Architectures").

1 PROBLEM DESCRIPTION

State-of-the-art real-time signal and data processing applications typically in
volve a rapidly increasing arithmetic complexity. In many cases, this is com
bined with a need for flexible and powerful decision-making. Furthermore, they

1

www.manaraa.com

2 CHAPTER 1

not only involve word-oriented processing but also employ advanced vector and
matrix operations [1]. Loops are abundant and sometimes non-parallelizable,
which leads to computational bottlenecks. This large application domain ranges
from audio and speech processing, user-end (portable) telecommunication, and
automotive applications, all of which exhibit low to medium throughputs, up to
HDTV, image, video, and radar processing, which require much higher sample
rates. In addition to such "hard" real-time applications, other data-intensive
tasks that require fast execution also increase in importance. Some examples
are real-time graphics and medical and other types of data acquisition.

All of these applications have in common that they are difficult to realize on
general-purpose hardware [7], when an efficient solution-in terms of power or
in terms of area-is required. Such realizations result in considerable overhead
in terms of memory requirement, I/O bandwidth, I/O interfaces, and controller
cost. Furthermore, there is typically a waste of cycles on the general-purpose
rigid data-paths. Similar arguments apply largely for MIMD assemblies of
general-purpose processors, even for the current generations of processors ori
ented towards parallel processing, such as Transputers or the TMS320C40 se
ries. In some cases, the design time for these implementation alternatives can be
small. For complex algorithms, though, the mapping stage may require many
iterations and time-consuming manual tuning, just like when custom hardware
is used. The major advantage is obviously the flexibility to make last-minute
changes. This is especially interesting during algorithm development and pro
totyping, when the algorithm is subject to continuous refinement. However,
when the system has reached the production stage and especially in the more
mature product generations, we believe special-purpose or application-specific
system realizations can be heavily motivated. In particular, this is the case if
the application requires that the implementation exhibits low power consump
tion or a small physical size, or if the production volume is reasonably high,
as is the case for the important markets of portable communication equipment
and consumer electronics products like HDTV and videophone.

It has to be stressed that the term application-specific in this context implies
few assumptions about the target implementation technology. The main re
quirement is that the technology permits the adaptation of the global archi
tecture, in terms of primitive building blocks like adders, register files, and
boolean operators, to the specific needs of the application. Hence, the com
plete range from full-custom design over macro-cell and/or standard-cell based
approaches, sea-of-gates technologies, and field-programmable devices all the
way to off-the-shelf building blocks can be the target.

www.manaraa.com

Application-driven synthesis methodologies

2 STATE-OF-THE-ART AND BEYOND

3

The development cost of a complex application-specific solution can be very
high, especially due to the typically long design cycle. Production cost will
depend largely on the target technology chosen: small volumes will motivate the
use of FPGAs, whereas large volumes favor the use of predefined macro-cells,
and intermediate situations may require intermediate solutions. Therefore,
much more effort should be spent on reducing the design-time-related cost.
Moreover, as a consequence of this long design time, the time-to-market can
be unacceptable. This is of major importance in the rapidly changing markets
of today. In almost all cases, the long design cycle is heavily dominated by
the time-consuming iterations due either to changes in the specifications which
affect many design stages, or to late detection of incompatibilities between
subcomponent designs.

State-of-the-art industrial CAD tools typically support only the lower end of
the design path, i.e., structural synthesis from a structural specification down
to the actual implementation [13]. In addition, the register-transfer and func
tional (combinatorial) levels in the design trajectory have become increasingly
mature in the past five years, both in academia and independent research labs
(e.g., IBM, U.C. Berkeley, University of Colorado at Boulder, Stanford, and
INP Grenoble) and recently also in industry (e.g., Synopsys, Cadence, Men
tor, Racal-Redac, Siemens, and Philips). Support is mainly restricted to the
register-transfer-Ievel scheduling and allocation of scalar signals to individual
registers, from simple operations to basic RT-level operators and from individ
ual transfers to multiplexers and connections.

The dominant part of the design trajectory above register-transfer level is still
largely unsupported. One of the reasons for this is the huge amount of dedicated
architectural options available to the designer [1, 32, 40, 23, 6]. Moreover, for
automatic synthesis on the higher abstraction levels to be a viable alternative
to hand design, especially in the consumer or domestic markets, a sufficiently
large design efficiency has to be achieved. The results should approach those
of manual designs, in terms of throughput, physical size, power consumption,
and packaging. Therefore, currently emerging solutions are largely restricted
to specification and co-simulation environments based on standards like VHDL
or other widely distributed hardware description languages like the Verilog
language. Usually, the description level applied is still very close to the RT
level structure. Moreover, all design decisions must be taken manually, even
those that are less critical for meeting the design constraints, very error-prone,
or very time-consuming.

www.manaraa.com

4 CHAPTER 1

In order to really solve the design-time bottleneck for real-time system design,
this is not sufficient. There is a clear need for higher level design support,
including synthesis tools at the architectural or behavioral (system) level which
include power- and area-efficient automated techniques. The tools should still
be fully controllable by the designer, so user interaction is another key issue.
We believe that in order to achieve this ambitious goal, we need [9]:

• A range of efficient target architecture styles architecture style underlying
the synthesis strategies. This is the only way to guarantee a sufficient
coverage of the design space without losing efficiency. Dedicated regular
arrays and application-specific multiplexed processors are two key target
styles that are addressed in this book.

• Domain-specific synthesis tools which fully exploit the characteristics of the
target architecture style and the corresponding application domain. The
tools will frequently differ for the alternative target styles. For instance, a
scheduler that is efficient for one style may be unsuitable or inefficient for
another.

This has not been widely realized until about 1991, even if some of the issues
had been addressed earlier. A detailed comparison with these approaches is
provided below in sections 5 and 6 and in the subsequent chapters.

3 CONTRIBUTION OF THIS BOOK

The goal of the work on architecture synthesis within the ASCIS and NANA

projects has been to contribute design methodologies and synthesis techniques
which address the design trajectory from real behavior down to the RT-Ievel
structural specification of the system. Our view of this synthesis process is
illustrated in figure 1.

The work described in this book specifically addresses the following topics,
which we believe will have a substantial impact on future application-specific
design methodologies:

• Refined system specification models that have embedded in them the prac
tical requirements of architecture synthesis and verification methods. This
is opposed to the simulation-oriented semantics of most of the widely used
specification formalisms, such as VHDL; still, support for a VHDL subset
has been investigated.

www.manaraa.com

Application-driven synthesis methodologies

User input

!

I System modeling I
!

System model

1 1

Irregular-application synthesis:
Regular-application synthesis:
• Flow graph extraction

• Control-dominated • Uniformization/localization
• High data throughput
• Medium data throughput

• Space-time mapping
• Partitioning, clustering

! 1

I Controller synthesis I
!

Architecture specification

Figure 1 Architecture synthesis as viewed within the ASCIS and NANA

projects. The input from the user is converted to a formal system model
which can also be written out in a readable specification format. Different
design trajectories must be followed, depending on the characteristics of
the application. The figure only shows the two main branches we have
addressed. The final high-level performance-driven controller synthesis
is similar for both branches. In the next design stages, which have not
been addressed by the projects, the detailed synthesis of the data-paths
and controllers on the RT and logical levels still has to take place. This
is then followed by the physical design stage.

5

www.manaraa.com

6 CHAPTER 1

• Novel design methodologies and synthesis techniques for regular array pro
cessor architectures intended for regular, high-throughput data-flow appli
cations.

• Novel design methodologies and synthesis techniques for multiplexed pro
cessor architectures intended for irregular high- and medium-throughput
applications. Both control-flow- and data-flow-dominated target domains
are treated.

• Performance-driven controller synthesis which makes high throughput pos
sible by overcoming part of the control bottleneck.

In order to provide complete support for the high-level synthesis trajectory,
many design problems must be addressed. We do not claim that the material
presented in this book covers the complete path, and certainly not all target
application domains or architecture styles. However, we do believe we have
contributed to the solution of a number of the most crucial problems in the
domains of architecture synthesis and the related issue of behavioral specifica
tion.

Moreover, the research effort of the ASCIS and NANA partners has been planned
with real applications in mind. Real-life drivers have been selected to steer the
development of the required methodologies and techniques. Some of the main
drivers will also be used as real-life demonstrator applications in the following
chapters.

The extent of each contribution by the partners and how they fit in a more
global design context will be summarized in somewhat more detail in the sub
sequent sections. Most of this work is also reflected in the subsequent chapters.
The structure of the book and the links between the other chapters will be
described in section 7.

www.manaraa.com

Application-driven synthesis methodologies

4 SYSTEM SPECIFICATION MODEL

7

Any synthesis method has to start from an initial specification, described in
terms of a model which has to meet a number of requirements. In particular,
there is clear need for:

• A specification model that explicitly contains the information necessary to
extract the desired functional behavior and the timing requirements in our
real-time application domain.

• The means to establish relations between the different elements or kernels
of the model while synthesis progresses. For example, flow-graph nodes
(operations) eventually have to be associated with structure nodes (oper
ators).

A global reduction of design time is only possible if the aspect of verification is
addressed. Leaving errors in a design until production is, of course, a disaster:
it will cause large extra costs to locate the error, correct it, and restart the
production process. Avoiding these design iterations by simulation alone has
the well-known problems of an incomplete check, a prohibitively large compu
tational load, and a difficult interpretation of the huge amount of simulation
responses. For these reasons, formal verification has been addressed by several
research institutes. Here, the goal is to formally prove that the system will
behave well in all circumstances.

To make formal verification possible, there are again several prerequisites on
the specification model:

• The model has to consist of formally defined elements. This allows formal
reasoning about its behavior. The models commonly used in simulation
programs are not strong enough for this.

• A partial or full description of the desired behavior of the system must
be available, again expressed using mathematical formalisms. This mathe
matical specification should be extracted from a more user-friendly input,
so that the designer does not have to learn complex formalisms.

Most of the current design models are not suitable for the real-time signal
processing domain and do not deal with the above requirements. At the start
of the ASCIS project, there was a clear need to fill this gap. This has led
to the ASCIS data flow-graph (DFG) model described in chapter 2. It differs

www.manaraa.com

8 CHAPTER 1

from most other data-flow approaches by a uniform embedding of conditional
and loop constructs, allowing, for instance, the specification of conditional or
repeated I/O and giving maximal opportunity for system optimizations.

A number of other design models have been proposed recently: the SIL model
in the context of the SPRITE (ESPRIT 2260) project, involving Philips and
its partners [21J; the DSFG/LIB models in the CATHEDRAL project at IMEC
[25J; and the RLEXT design model from the University of Illinois [20J come to
mind. However, the RLEXT model addresses mostly RT-Ievel issues and not
the true behavioral synthesis models. The other models mentioned have been
established in close cooperation with the ASCIS work.

The resulting refined DFG format has been adopted as a common specification
format by all the ASCIS and NANA partners. Moreover, initiatives have been
taken to come to a standardization in this domain together with several other
European partners.

In addition, effort has been spent on formal verification itself, especially regard
ing timing issues for control-flow-dominated systems. A study of propositional
temporal logic has shown its feasibility to verify correctness of sequential logic
circuits, CMOS transistor circuits, and finite state machine diagrams against
each other [16]. This work has been received with great interest in the world
wide research community, since verifications were done that previously seemed
untractable. It has been applied in the context of performance-driven controller
synthesis, as described in chapter 10.

Verification has also been performed directly on the DFG [17J. This is a highly
interesting perspective, since data flow graphs are widely used as the starting
point for synthesis. The verification here is a more global data-independent
scope, allowing the verification of much larger systems at the cost of a reduced
resolution: detailed, data-dependent functional behavior is not modeled.

It is also important to provide a conversion from existing specification languages
to the DFG model. For this purpose, a VHDL modeling scheme has been
developed [27J. This allows to represent the DFG as a subset of VHDL and vice
versa. Also, conversions from other languages that cover important application
domains have been investigated, namely HARDWAREC [22] and SILAGE [15].
More information is provided in chapter 2.

www.manaraa.com

Application-driven synthesis methodologies

5 SYNTHESIS OF ARRAY PROCESSORS

9

As the complexity of what can be integrated on a single die or in a multi
chip module is increasing tremendously, it becomes more and more attractive
to implement special-purpose architectures using highly modular parallel algo
rithms [36]. In that case, the modularity inherent in the algorithms should be
reflected in a regular architecture with one- or two-dimensional (I-D or 2-D)
repetitivity in the arrangement of processing elements, local communication,
and distributed local storage. Examples of such regular organizations are sys
tolic or wavefront arrays, which are typically defined as regular networks of
locally interconnected elementary processors [23]. In order to avoid a long crit
ical path spanning several processors, intensive pipelining is used between the
processors, leading to the term "systolic." Reasons to consider this regular
array style include:

• High performance due to the systematic use of parallelism and pipelining.

• Decreased design time obtained by implementing only a few elementary
cells which are then replicated many times.

• Design modularity, i.e., the possibility of using the same set of cells for the
various values of some size parameter of the algorithms.

• Simplification of test and fault-tolerance issues, as the complexity of the
analysis is broken by the regularity of the design.

• Potentially lower power consumption. Regular parallel architectures per
mit trading off clock speed and parallel computation in a much more flexi
ble way than irregular ones. This issue is important when power consump
tion is to be minimized.

An important driver which has influenced several of the subtasks in the array
synthesis methodologies in this book is the solution of the algebraic path prob
lem (APP) which is occurring frequently in mathematical equation solvers and
in data analysis. This driver will be discussed in detail in chapter 3. Several
crucial subtasks will be identified, and the results for several architectures op
timized for the APP problem will be described. For many of these subtasks, a
link will be made with the synthesis techniques and tools necessary to address
these issues.

www.manaraa.com

10 CHAPTER 1

Research on formal methods for the design of array architectures has been
going on for about 10 years [35, 29J. Briefly, these methods consist of trans
forming an iterative specification of the desired algorithm into the specifica
tion of an architecture, by mapping the initial iteration space onto a new
"space-time" space, composed of the processor number space and the execu
tion time. The majority of the approaches has concentrated on pure systolic
arrays [2, 8, 43, 11, 23, 29, 36, 37], as is also evident from the references of
chapters 6 and 4. Moreover, most of the techniques reported until now are
based on either heuristic transformations applied in a user-defined sequence, or
on linear or affine transformations of the index space and dependence vectors
of an iterative algorithm that is already uniformized. The heuristic transfor
mations of the first class are executed in an unformalized, ad-hoc way. This
leads to an architecture mapping which is very sensitive to user input. Most of
the affine transformations are only dealing with part of the mapping trajectory,
namely starting from a level usually referred to as uniform recurrence equations
(UREs) [18].

In addition, most array architecture design methods deal either with the design
of non-real-time systems or with programmable arrays composed of rigid PEs,
mostly composed with off-the-shelf components. However, the area of fully
customized designs for real-time signal and data processing subsystems is im
portant for industry. We believe this is not addressed in a sufficiently effective
way by the existing techniques, as indicated in chapters 6 and 4.

Hence, we have felt the need for several extensions to the design trajectory:

• The initial specification should be at a higher level than the conventional
level of uniform recurrence equations (UREs). A "front end" is needed
to build the dependence graph from a more user-friendly specification of
the algorithm. Several specification languages have been proposed here.
Procedural models with FORTRAN-style DO loops are used in chapters 4
and 5 for data processing applications, involving complex data updates
in the algorithm that are more difficult to express without the concept of
"variables." In contrast, functional languages like ALPHA [3J and SILAGE
[15J are introduced in chapter 6 for more regular signal processing appli
cations that may be elegantly described in single-assignment form. For all
these languages, a conversion is needed to some type of dependence graph.
For the functional languages this is relatively simple, but for the procedu
ral languages, novel techniques have been developed to achieve this goal.

www.manaraa.com

Application-driven synthesis methodologies 11

• The gap between high-level behavioral descriptions and the URE level
has to be bridged with formalized high-level transformations on the signal
flow graphs. These involve mainly reindexing to arrive at a set of affine
recurrence equations in a single domain [44] and localization for dealing
with broadcast and global operations [43]. At this stage, the possibility
of interactive guidance is also of crucial importance [3]. This topic will be
addressed in more detail in chapter 6.

• The properties of real-time signal and data processing applications have
to be exploited to arrive at fully efficient application-specific architectures.
This requires extensions to the basic linear space-time mapping methods
[44] as proposed in chapters 3 and 6. In addition, an alternative affine
space-time transformation method based on the existence of independent
subsets in the index space is introduced in chapter 5. This method has led
to efficient arrays with high hardware utilization [24].

• Both word-level and bit-level parallelism should be exploited to reach the
extreme throughputs which are needed in particular applications like radar
processing [33]. Extensions in this direction are introduced in chapter 5.
Employing the features of various arithmetic systems, such as 2's comple
ment and residue number systems (RNS) [42], bit-level systolic arrays can
now be derived automatically.

• After space-time mapping, the conditional execution of several operations
on the same processing element (PE) may be needed. Regularization tech
niques to address this problem are presented in chapter 4.

• In order to match the required throughput or the required array size, it is
necessary to partition the initial architecture with full index ranges into
a set of serially executed subsets and then to cluster these onto a smaller
sized array. This important task has been addressed in depth [5] and is
described in chapter 4. Extensions which can result in a better preservation
of the regularity, especially for latency-limited applications, are proposed
in chapter 3.

The comparison of our approaches with some other techniques, which do ad
dress particular issues that we feel to be vital for this domain, will be presented
in more detail in the subsequent chapters.

Some of the applications studied during the development of the array processor
design methods will be described along with the methods themselves. The ap
plications range from so-called "kernel algorithms" (matrix computation, filters

www.manaraa.com

12 CHAPTER 1

in one and two dimensions, dynamic programming, singular value decomposi
tion, etc.) to real-life applications such as image analysis, video coding, and
computer graphics algorithms.

6 SYNTHESIS OF MULTIPLEXED PROCESSORS

A second important architecture style for real-time signal processing systems is
the multiplexed processor style, characterized by a set of application-specific,
time-multiplexed data-paths steered by a hierarchically organized controller.
This style is tuned to irregular applications, requiring a medium to high sample
rate (10 kHz - 10 MHz). Many applications at these rates require a combination
of computation-intensive arithmetic and complex decision-making operations.
For these applications, the array style (as described in section 5) is unsuitable.

1 Control-flow-dominated processors

The multiplexed processor style spans a large complexity range, both for the
data-paths and for the controller. An algorithm with a small amount of data
flow with mainly operations on scalar data, but with a complex mix of nested
loops, data-dependent iterations (including global exceptions and uncondi
tionalloop exits), and nested conditions, is characterized as control-flow-domi
nated. These algorithms abound in embedded control applications and in some
telecommunication systems. They require a complex controller with a relatively
simple but programmable data-path. Much effort has been spent on synthe
sis techniques for this important target application domain [49, 30]. However,
several issues have not yet been fully addressed. In particular, support for a
flexible building block (BB) library that not only contains standard BBs-such
as ALUs-but also complex devices with as yet unknown clock cycle delays
such as cache memories or I/O processors-is necessary for a system to be
useful for real-life designs. Efficient algorithms for allocation and scheduling
tuned to these extensions are needed, too [31]. Also, interactive optimization
capabilities should be stressed. Research to find a solution for these problems
has led to the AMICAL environment [12] which is described in chapter 9.

2 Data-flow-dominated processors

In domains like automotive applications and back-end speech or audio process
ing, the data-flow issues are more dominant than the control flow. Then, there

www.manaraa.com

Application-driven synthesis methodologies 13

is a need for another target style with more emphasis on the data-paths and
the storage. However, due to the medium sample rates, the data-paths will
still need to be highly multiplexed and thus partly programmable in order to
share hardware as efficiently as possible. Synthesis techniques for related target
domains have been studied in the past [41, 38, 25]. However, in many cases
there is a need to map such applications, which are not time-critical, onto pre
defined architectures for prototyping purposes. In this context, solutions based
on field-programmable gate arrays (FPGAs) have become especially attractive
lately. This style has been addressed using applications from the automotive
field [47,48]. The memory organization, the mapping onto the fixed data-path,
and the connection network and scheduling have been the focuses here. The
results on this highly multiplexed processor synthesis are described in chapter 8.

When mostly data-flow computations have to be performed combined with a
limited control flow in a limited sample period, this calls for highly customized,
pipelined, and more complex data-paths to solve the timing-related bottlenecks.
This lowly multiplexed processor style is especially suitable for irregular image
and video processing, user-end telecom, and front-end audio or speech process
ing subsystems, where the operations must be performed partly in parallel [6].
Dealing with these subsystems involves synthesis subtasks [25] that have not
been addressed so far in existing synthesis approaches [26], such as how to map
multidimensional signals in an effective way on distributed memory organiza
tions. Most of the effort has gone into reorganizing the control flow for a given
data flow [45]. In addition, the definition of the dedicated pipelined data-path
organization has been addressed [14]. This has led to a complete lowly multi
plexed processor synthesis approach, which is further discussed and compared
to the state of the art in chapter 7.

In application domains like computer graphics, the iterative constructs for the
data-flow-dominated algorithms are data-dependent. As a result, analysis and
architecture synthesis techniques need to be developed for iterative constructs
with potentially unbounded iterator ranges. In contrast to the situation in
fixed-period signal processing where the worst-case response time has to meet
the sample period criterion, now the average throughput is the important per
formance parameter. This problem has been addressed in part within ASCIS
[4], but the results are not yet incorporated in this book.

The basic techniques to perform scheduling and assignment tasks are also im
portant items. Although good heuristics exist for many specific problems, there
is also a general demand for generic global optimization techniques to efficiently
support the synthesis process. Simulated annealing [19] is a good example of
such a technique, which has proven to be very useful. However, the complexity

www.manaraa.com

14 CHAPTER 1

of the cost function that is evaluated for every potential step in the solution
space and the resulting large computation time restrict the use of this technique
in efficient interactive synthesis environments.

In recent years, new optimization methods have been published, promising gen
eral applicability with less computational complexity than simulated annealing.
Two such new techniques have been investigated in the context of our projects:

• Genetic algorithms are search algorithms based on the mechanics of natural
selection and natural genetics. Promising results in the area of scheduling
for a given allocation have been reached [46J.

• Optimization based on neural network solvers has been investigated, too.
This technique has been applied with good results to the assignment prob
lem as it occurs during lowly multiplexed processor synthesis [34J.

Both of these techniques are characterized by their potential for massive par
allelism. This aspect is very promising for their future use in the increasingly
parallel computing environments.

3 Performance-driven controller synthesis

Designing high performance processors requires not only high performance
data-paths but also fast and efficient controllers. An appropriate controller
architecture is needed, as well as an efficient physical implementation.

Controller synthesis has been the subject of a very large amount of effort both
in academia and industry (see section 2). However, until recently, the aspect
of performance-driven manipulations has been largely neglected. Therefore,
within the ASCIS context, effort has been devoted to filling this gap, even
though this is not strictly within the high-level architectural synthesis domain
as we define it. The results are described in chapter 10.

First of all, work has been performed on the optimization of the control unit
architecture. One particular architectural feature that has been investigated is
the subroutine mechanism. Subroutines enable the reuse of hardware resources;
this could significantly reduce the area of the controller while also providing a
shorter critical delay path. An algorithm has been developed that automatically

www.manaraa.com

Application-driven synthesis methodologies 15

transforms a controller specification to exploit subroutines in an efficient way
[39]. Comparison to hand-made designs has shown that the algorithm in many
cases produces results comparable to manual design.

In addition, effort has been spent on the optimizations related to technology
mapping. In contrast to the majority of the approaches in literature until
recently, the focus has been on performance-driven mapping onto compiled
functional cells [28].

7 CHAPTER OVERVIEW

In order to provide a clear overview of the work described in this book and the
way in which the other chapters are linked, they will be listed below with a
short description of their content. The intention in the chapters of this book
has not been to describe the novel synthesis techniques in detail. Many results
have already been published in conferences and journals which deal with these
techniques. The most important publications are listed in the bibliographies
of the individual chapters. Instead, most of the emphasis will be placed on
the high-level methodologies and on how these are inspired by the targeted
application domains. In addition, most results are illustrated with a realistic
demonstrator application. This will permit easy assessment of the power and
the impact of the obtained results. It will also clarify the current status of the
realization of the synthesis tools and environments.

Behavioral system modeling

• "Behavioral specification for synthesis"

This chapter summarizes the basic model concepts that are used for the ini
tial specification, but that are also highly tuned towards the requirements
of the subsequent architecture synthesis steps. In a.ddition, the link to
behavioral specification languages used within the synthesis environments
is made, with emphasis on a VHDL subset.

Synthesis methodologies for regular applications

• "Formal methods for solving the algebraic path problem"

This chapter concentrates on one particular application and the methods
needed to effectively tackle the architecture design. An historical overview
of the evolution in the design methodologies and their effectiveness per-

www.manaraa.com

16 CHAPTER 1

mits assessment of the significant progress made in this area. From this
overview, the need for support of a number of synthesis tasks is empha
sized. Many of the necessary techniques and tools are described in the
other chapters.

• "HiFi: from parallel algorithm to fixed-size VLSI processor array"

This chapter concentrates on methods suitable for extracting regular data
flow-dominated applications from a procedural specification, on methods
for dealing with the conditional control flow resulting from mapping differ
ent operations on the same processor element, and on mapping techniques
onto regular arrays with a fixed array size. Moreover, the necessary design
models at different levels in the trajectory are discussed, and a uniform
solution is described. A Floyd-Steinberg algorithm for use in document
manipulation for a digital copier application is used as a demonstrator.

• "On the design of two-level pipelined processor arrays"

This chapter concentrates on methods suitable for extracting the uniform
data-flow for regular applications expressed with procedural DO loops.
Synthesis techniques supporting the important extension to bit-level arrays
are also discussed. This makes it possible to design arrays with a very
high throughput, where all the algorithmic parallelism is exploited. A I-D
convolution algorithm which is a subsystem in many real-time processing
applications is used as a demonstrator in this chapter.

• "Regular array synthesis for image and video applications"

This chapter concentrates on space-time methods suitable for dealing with
many broadcast localization alternatives and for mapping regular, data
flow-dominated applications onto regular arrays with complex processing
elements. This is linked with a complete transformation environment that
supports these array mapping techniques. Also, the need for extending the
level of the initial specification to real behavior is motivated, including the
requirements on additional synthesis techniques to fill the resulting gap in
specification. A complete motion estimation subsystem from a local area
network video coding application is used as a demonstrator.

Synthesis methodologies for irregular applications

• "Memory and data-path mapping for image and video applications"

This chapter concentrates on methods suitable for mapping high-through
put, data-flow-dominated applications onto fully application-specific, lowly

www.manaraa.com

Application-driven synthesis methodologies 17

multiplexed processor architectures. The emphasis lies on the techniques
for the memory management needed to deal with the many multidimen
sional signals, and techniques for the organization of the complex cus
tomized data-paths. An updating singular-value decomposition algorithm
for data acquisition and a video format conversion application are used as
demonstrators.

• "Automatic synthesis in mechatronic applications"

This chapter concentrates on methods suitable for mapping medium-rate,
data-flow-dominated applications onto programmable (FPGA-based) ar
chitectures for rapid prototyping purposes. The emphasis lies on the highly
multiplexed target architecture and on important steps which need to be
dealt with, such as memory organization, data and control flow transfor
mations, and scheduling/binding. A differential heat release computation
subsystem in an automotive application is used as a demonstrator.

• "Synthesis for control-flow-dominated machines"

This chapter concentrates on methods suitable for control-flow-dominated
applications. A flexible library of complex building blocks, including pre
defined I/O interfaces and memories, is targeted. Emphasis is placed on
scheduling and allocation techniques tuned to this domain and on the in
teractive environment in which the tools are embedded. The demonstrator
of this chapter is a complete telephone answering machine controller.

Synthesis methodologies for real-time controllers

• "Controller synthesis and verification"

This chapter addresses the performance-driven issues in high-level con
troller design. In particular, effective ways to decompose the controller
architecture are presented. The effect of compiled cells on performance
driven technology mapping is also discussed. Finally, it provides results
on formal verification aspects in a real-time context.

www.manaraa.com

18 CHAPTER 1

8 CONCLUSION

This book provides an overview of state-of-the-art work in the domain of be
havioral and architectural synthesis for real-time processing applications. The
contributions are based on work carried out within the AsCIS and NANA re
search projects from mid-1989 to mid-1992. In this introductory synopsis, we
have motivated' that specific requirements to solve some crucial design bot
tlenecks are not met with existing design automation support. In particular,
specific characteristics of real-time processing were not at all or not sufficiently
exploited until now. In the subsequent chapters, several major contributions
will be proposed to this important domain for future systems industrial needs,
especially in the important markets of portable user-end telecommunication
equipment, multimedia support, automotive processing, and consumer elec
tronics such as HDTV, videophone, and digital audio broadcasting. We believe
a transfer of these new technologies to development-oriented projects, includ
ing large systems companies, will help to shape the future systems and design
automation industry in Europe and abroad.

To a large extent, the success of our work in this domain has been due to
the excellent cooperation between the partners, both in the context of formal
exchanges between the different tasks and by informal contacts at the frequent
meetings and workshops. We believe that this cross-fertilization between the
partners is the main added technical value of the ESPRIT type of basic research
actions. The three years of cooperation has definitely led to an increase of our
research productivity.

REFERENCES

[1] J. Allen. Computer architecture for digital signal processing. Proc. of the
IEEE, 73, number 5, pages 854-873, May 1985.

[2] J. Annevelink and P. Dewilde. HiFi: A functional design system for VLSI
processing arrays. Proc. IEEE International Conf. on Systolic Arrays, San
Diego, pages 413-452, May 1988.

[3] A. Benaini, P. Quinton, Y. Robert, Y. Saouter, and B. Tourancheau. Syn
thesis of a new systolic architecture for the algebraic path problem. Science
of Computer Programming, 1989.

[4] J. P. Brage. Hardware description languages for synthesis: problems and
possibilities. In Proc. of the tenth NORCHIP Seminar '92, Helsinki, Fin
land, pages 22-29. Nov 1992.

www.manaraa.com

Application-driven synthesis methodologies 19

[5] J. Bu and E. Deprettere. Processor clustering for the design of opti
mal fixed-size systolic arrays. Algorithms and Parallel VLSI Architectures,
Vol. A, pages 341-362. North Holland, Elsevier, Amsterdam, 1991.

[6] F. Catthoor and H. De Man. Application-specific architectural methodolo
gies for high-throughput digital signal and image processing. IEEE Trans.
on Acoustics, Speech and Signal Processing, 37, number 2, pages 176-192,
Feb 1990.

[7] B. Cole et al. The embedded processor breaks out of its niche. Electronics,
pages 61-87. McGraw-Hill, Mar 1988.

[8] J.-M. Delosme and 1. Ipsen. Efficient systolic arrays for the solution of
Toeplitz systems. In W. Moore, A. McCabe, and R. Urquhart, editors,
Systolic arrays, pages 37-46. Adam Hilger, Bristol, 1987.

[9] H. De Man, F. Catthoor, G. Goossens, J. van Meerbergen, J. Rabaey, and
J. Huisken. Architecture-driven synthesis techniques for mapping digital
signal processing algorithms into silicon. Proc. of the IEEE, 78, number 2,
pages 58-78, Feb 1990.

[10] P. Dewilde and E. Deprettere. Architectural synthesis of large, nearly
regular algorithms: design trajectory and environment. Annales des
telecommunications, 46, number 1-2, pages 48-59, Jan-Feb 1991.

(11] J. Fortes and D. Moldovan. Parallelism detection and transformation tech
niques useful for VLSI algorithms. Journal of Parallel and Distributed
Computing, 2, pages 277-301, 1985.

[12] A. Jerraya, 1. Park, and K. O'Brien. AMICAL: an interactive high-level
synthesis environment. Proceedings of the European Design Automation
Conf., Paris, France, Feb 1993.

[13] D. Gajski, editor. Silicon Compilation. Addison-Wesley, 1988.

[14J W. Geurts, F. Catthoor, and H. De Man. Time constrained allocation
and assignment techniques for high throughput signal processing. Proc.
29th ACM/IEEE Design Automation Conf., Anaheim, pages 124-127, Jun
1992.

[15J P. Hilfinger, J. Rabaey, D. Genin, C. Scheers, and H. De Man. DSP spec
ification using the Silage language. Proc. Int. Conf. on Acoustics, Speech
and Signal Processing, Albuquerque, NM, pages 1057-1060, Apr 1990.

www.manaraa.com

20 CHAPTER 1

[16] G. Janssen. Hardware verification using temporal logic: a practical view. In
L. Claesen, editor, Proc. IMEC-IFIP we 10.2/10.5 International Work
shop on Applied Formal Methods for Correct VLSI Design, Houthalen,
Belgium, pages 291-300. Elsevier, Amsterdam, Nov 1989.

[17] G. de Jong. Verification of data flow graphs using temporal logic. In L.
Claesen, editor, Proc. IMEC-IFfP we 10.2/10.5 International Workshop
on Applied Formal Methods for Correct VLSI Design, Houthalen, Belgium,
pages 301-310. Elsevier, Amsterdam, Nov 1989.

[18] R. Karp, R. Miller, and S. Winograd. The organization of computations for
uniform recurrence equations. Journal of the Association for Computing
Machinery, 14, number 3, pages 563-590, July 1967.

[19] S. Kirkpatrick, C. Gelatt Jr., and M. Vecchio Optimization by Simulated
Annealing. Science, No. 220, pages 671-680, 1983.

[20] D. Knapp and M. Winslett. A prescriptive formal model for data-path
hardware. IEEE Trans. on Computer-Aided Design, CAD-ll, number 2,
pages 158-184, Feb 1992.

[21] T. Krol, J. van Meerbergen, C. Niessen, W. Smits, and J. Huisken. The
SPRITE input language: an intermediate format for high-level synthesis.
Proc. European Conf. on Design Automation, Brussels, Belgium, pages
193-199, March 1992.

[22] D. Ku and G. De Micheli. Synthesis of ASICs with Hercules and Hebe.
In R. Camposano and W. Wolf, editors, Trends in high-level synthesis.
Kluwer, Boston, 1991.

[23] S. Y. Kung. VLSI Array Processors. Prentice Hall, 1988.

[24] E. Kyriakis-Bitzaros and C. Goutis. An efficient decomposition technique
for mapping nested loops with constant dependencies onto regular proces
sor array processors. Journal of Parallel and Distributed Computing, 16,
pages 258-264, 1992.

[25] D. Lanneer, S. Note, F. Depuydt, M. Pauwels, F. Catthoor, G. Goossens,
and H. De Man. Architectural synthesis for medium and high through
put signal processing with the new CATHEDRAL environment. In R.
Camposano and W. Wolf, editors, Trends in high-level synthesis. Kluwer,
Boston, 1991.

[26] M. McFarland, A. Parker, and R. Camposano. The high-level synthesis of
digital systems. Proc. of the IEEE, 78, number 2, pages 301-318, Feb 1990.

www.manaraa.com

Application-driven synthesis methodologies 21

[27] J. Madsen and J. Brage. Flow graph modeling using VHDL bus resolu
tion functions. Proc. of the First European Conference on VHDL Methods,
IMT, Marseille, Sep 1990.

[28] J. Madsen. Layout synthesis using compiled cells. PhD Thesis, Department
of Computer Science, Technical University of Denmark, 1992.

[29] D. Moldovan. Advis: a software package for the design of systolic arrays.
Proc. IEEE Int. Conf. on Computer Design, Port Chester NY, pages 158
164, Oct 1984.

[30] P. Michel, U. Lauther, and P. Duzy, editors. The synthesis approach to
digital system design. Kluwer, Boston, 1992.

[31] K. O'Brien, M. Rahmouni, and A. Jerraya. DLS: a scheduling algorithm
for high-level synthesis in VHDL. Proc. Europ. Design Automation Conf.,
Paris, France, Feb 1993.

[32] R. J. Offen, editor. VLSI Image Processing. McGraw-Hill, 1985.

[33] V. Paliouras, D. Soudris, and T. Stouraitis. Systematic derivation of the
processing element of a systolic array based on residue number system.
Proc. IEEE Int. Symp. on Circuits and Systems, San Diego, 1992.

[34) W. Philipsen and G. de Jong. Refinement of Petri nets: the neural net
approach. Proc. of the Int. Neural Network Conf., Paris, France, Vol. 1,
pages 266-269. Kluwer Academic Publishers, Boston, Ju11990.

[35] P. Quinton. Automatic synthesis of systolic arrays from recurrent uniform
equations. 11th Int. Symp. Computer Architecture, Ann Arbor, pages 208
214, Jun 1984.

[36] P. Quinton and Y. Robert, editors. Algorithms and parallel VLSI architec
tures II. Elsevier, Amsterdam, 1992.

[37] S. Rao and T. Kailath. Architecture design for regular iterative algorithms.
In E. E. Swartzlander, editor, Systolic Signal Processing Systems, pages
209-297. Dekker Inc, New York, 1987.

[38] J. Rabaey, H. De Man, J. Vanhoof, G. Goossens, and F. Catthoor. CA
THEDRAL II: a synthesis system for multi-processor DSP systems. In D.
Gajski, editor, Silicon Compilation, pages 311-360. Addison-Wesley, 1988.

[39] K. Ranerup and L. Philipson. Control architecture selection from state
graph characteristics. Proc. ASCIS Open Workshop on Controller Synthe
sis, Technical University of Denmark, Lyngby, Denmark, Sep 1991.

www.manaraa.com

22 CHAPTER 1

[40] P. Ruetz, R. Jain and R. Brodersen. Comparison of parallel architectures
for image processing systems. Proc. IEEE Int. Symp. on Circuits and Sys
tems, San Jose, pages 732-737, April 1986.

[41] C. B. Shung, R. Jain, K. Rimey, E. Wang, M. Srivastava, B. Richards, E.
Lettang, K. Azim, L. Thon, P. Hilfinger, J. Rabaey, and R. Brodersen. An
integrated CAD system for algorithm-specific IC design. IEEE Trans. on
Computer-Aided Design, CAD-lO, number 4, pages 447-463, Apr 1991.

[42] F. Taylor. Residue arithmetic: a tutorial with examples. IEEE Computer
Magazine, pages 50-62, May 1984.

[43] V. van Dongen and P. Quinton. Uniformization of linear recurrence equa
tions: a step towards the automatic synthesis of systolic arrays. IEEE
International Conf. on Systolic Arrays, San Diego, pages 473-482, May
1988.

[44] M. van Swaaij, J. Rosseel, F. Catthoor, and H. De Man. Synthesis of
ASIC regular arrays for real-time image processing systems. Journal of
VLSI signal processing, 3, pages 183-192, Kluwer, Boston, Sep 1991.

[45] M. van Swaaij, F. Franssen, F. Catthoor, and H. De Man. High-level mod
eling of data and control flow for signal processing systems. In M. Bayoumi,
editor, Design methodologies for VLSI DSP architectures and applications.
Kluwer, Boston, 1992.

[46] N. Wehn, M. Held, and M. Glesner. A novel scheduling/allocation ap
proach for data-path synthesis based on genetic paradigms. Proc. IPIP
Working Conference on Logic and Architecture Synthesis, Paris, France,
May 1990.

[47] N. Wehn, H. Herpel, T. Hollstein, P. Pochmiiller, and M. Glesner. High
level synthesis in a rapid-prototype environment for mechatronic systems.
Proc. of EURO-DAC'92, Hamburg, pages 188-193, Sep 1992.

[48] P. Windirsch, H. Herpel, A. Laudenbach, and M. Glesner. Application
specific microelectronics for mechatronic systems. Proc. of EURO-DAC'92,
Hamburg, pages 194-199, Sep 1992.

[49] W. Wolf, A. Takach, and T-C. Lee. Architectural optimization methods
for control-dominated machines. In R. Camposano and W. Wolf, editors,
Trends in high-level synthesis. Kluwer, Boston, 1991.

www.manaraa.com

2
BEHAVIORAL SPECIFICATION

FOR SYNTHESIS

Jos T. J. van Eijndhoven1 , Jochen Jess1

Jens P. Brage2

1 Eindhoven University of Technology
2 Technical University of Denmark

ABSTRACT

This chapter describes some results of the ASCIS project on behavioral spec
ification languages and models used as input for high-level synthesis. Three
very different languages have been investigated for input specification: SILAGE,
HARDWAREC, and VHDL. For VHDL, a semantic and syntactic subset suitable
for high-level synthesis has been chosen; an important characteristic of this
subset is asynchronous communication. The specification languages are con
verted into a data flow graph representation. A data flow model is presented,
which supports hierarchy and special control constructs for conditional and it
erative statements and maximizes the opportunities for global optimizations.
Standardization at this level enables a synthesis environment which supports
different synthesis trajectories starting from a common entry point. Moreover,
it has facilitated exchange of examples and algorithms between the project
partners.

1 INTRODUCTION

High-level synthesis concerns generating an architecture (a network at the reg
ister transfer level) that implements (executes) a given behavioral specification.
Since the space of possible solutions is extremely large, both hard constraints
and optimization criteria are applied. Due to the complexity of the problem,
finding the optimal solution cannot in general be guaranteed. This results in
different ways of partitioning the synthesis problem and different heuristics to

23

www.manaraa.com

24 CHAPTER 2

solve subproblems. The partitioning in and ordering of the different subprob
lems, and the specific algorithms used to solve each of them, very much depend
on the application domain. Signal processing, video algorithms, controllers,
and microprocessors require different optimization strategies to end up with
good architectures.

In the ASCIS project, different groups concentrated on architectural synthesis
for different application areas, as described in the subsequent chapters of this
book. To allow exchange of examples and algorithms, a common interface was
needed at the level of behavioral specifications. While different research groups
worked with different specification languages, partly for historical reasons but
more importantly because of suitability for their application domain, it was
decided to make data exchange at the data flow graph level. The main reasons
were:

• Data flow graphs are a suitable starting point for architectural synthesis,
since they allow maximal freedom in exploiting area/time tradeoffs and do
not impose real restrictions towards different design styles.

• To start architectural synthesis, an initial data flow analysis is required.
It is also this process which resolves the very different nature of current
designer interface languages (VHDL, HARDWAREC, SILAGE, ...). By stan
dardization on the result of this analysis, the input alternatives become
available for all the synthesis projects.

• Unlike many designer-oriented specifications, data flow graphs are semanti
cally clean and simple, thus forming an unambiguous behavioral definition
suitable to interface to or exchange between synthesis packages, as well as
to formal verification.

• Various optimization tools that perform manipulations at the data flow
graph level become generally available in the synthesis projects.

As result of this approach, the data flow graphs serve as an intermediate for
mat, and a system structure as outlined in figure 1 is obtained. The formal
verification is included to check thoroughly for design errors in the initial be
havioral specification, which is of utmost importance with complex ASICs: one
cannot afford the time and money for a major redesign. The required type of
verification at this stage is sometimes referred to as model checking: verifying
whether the current specification guarantees certain desired properties [6, 7].
This is opposed to other types of verification, where two different specifications
are checked for equivalence or where a developed implementation is checked

www.manaraa.com

Behavioral specification for synthesis 25

Figure 1 The language interface.

to fulfill the initial specification, as described in section 4 of chapter 10. To
allow for formal verification, the semantics of the data flow graph must be accu
rately and unambiguously defined. The definition of this intermediate format
is therefore done in close cooperation with the development of the verification
methods.

The next section will treat the data flow graph standard, as developed in the
ASCIS project, with topics like design criteria, allowed graph structures, se
mantics, syntax, and later extensions. Section 3 discusses designer-oriented
specification languages. It will focus on the suitability of VHDL and a newly
developed VHDL subset for high-level synthesis.

2 THE ASCIS DATA FLOW GRAPH

1 Background

The data flow graph model for the ASCIS project [16] is based on earlier work
at the Eindhoven University of Technology: both theoretical work [17] and the
application in synthesis [14]. The model was designed to combine a unique set
of features, which set it apart from other approaches [5, 12, 19]:

• The data flow graphs are allowed to contain conditionals as well as loop
constructs. A token flow semantics is responsible for a concise behavioral
model, without the need for additional external control information. Hav
ing conditionals and loops coherently represented in the data flow graph
allows synthesis programs to perform several global optimizations, unin
hibited by block boundaries, as are imposed by most other representations.

www.manaraa.com

26 CHAPTER 2

• A flexible and open approach to data typing is used, allowing numeric as
well as bitwise operations on the same values, and supporting easy addition
of new (or design-specific) datatypes.

• Dedicated nodes can be used for input and output operations, allowing the
specification of sequences of reads and writes on one physical port, condi
tional I/O, or the sharing of one physical port with several hierarchically
structured subgraphs.

• The exchange format is a textual file with a Lisp-like syntax. This makes
the format easily extendible for local or future needs, while maintaining
backwards compatibility with older programs that do not understand these
extensions.

2 The data flow graph

A data flow graph is a graph where each node represents an operation, and
the edges represent the transfer of values between the nodes. The edges attach
at ports of the nodes. The ports are either input ports or output ports. The
behavior of a node is defined as a behavior between its ports. A crucial property
of the data flow graph is that each input port has precisely one edge attached
to it, whereas the number of edges on an output port is left free.

The behavior of the graph is defined by a token flow mechanism. A token
flow machine is a graph where the nodes represent operations, and the edges
transport tokens from the origin node to a destination node (directed edges). A
token can correspond to a new data-value-such a token is called a data token
or it is just a signal which can enable the destination node (a sequence token).
A token stays on an edge until it is consumed by the node at its destination.
In principle, it is allowed to have multiple tokens on an edge, in which case
they maintain their order: a queue of tokens. The execution of a node can
start when a token is available on each input port. The node then takes the
input tokens away and starts its execution. After execution, the node places
one output token (which may contain a computed data value) on each output
port and the edges transport these tokens to the next nodes. If multiple edges
connect to an output port, each edge obtains a copy of the token.

Classification of nodes and edges

Two types of edges are distinguished by the kind of tokens they transport.
Data edges transport tokens containing actual data values. Sequence edges

www.manaraa.com

Behavioral specification for synthesis 27

carry tokens of which the data value is to be ignored: they are used to enforce
a certain sequence in the execution of the nodes.

Several different node types are distinguished:

Operation nodes: These nodes represent operations like arithmetic opera
tions (+, -, x, -;-), boolean operations (tI, V, <, 2:), or more complex
operations. The complex operation nodes provide hierarchy within the
graph semantics as used in description languages (procedures, functions).

Input and output nodes: A graph links with the outside world exclusively
through its input and output nodes. Nodes of type output are the only
nodes without output ports; nodes of type input are the only nodes without
input ports.

Constant nodes: Nodes of type constant are nodes that generate a constant
data value at their output port.

Control nodes: Such nodes are used for building control structures, such as
if-then-else or while-do constructs.

Get/put nodes: These nodes correspond to actions performed on physical
terminals of the generated network. On one terminal, a sequence of read
and/or write actions can be performed.

Delay nodes: Nodes of this type are used to reference data values from pre
vious executions of the graph or to explicitly indicate pipelining. At ini
tialization time of the graph, the node causes an initial token to emerge at
its input and otherwise just passes all incoming tokens to its output.

Array nodes: An array represents the explicit storage of values, and can be
referenced with update and retrieve nodes.

Data flow analysis

Variables as used in hardware description languages or ordinary programming
languages attach names to values, which are inputs and outputs of expres
sions. In a data flow graph, values obtained from expressions are transported
by tokens. Removing the explicit reference to variables in an input language,
and creating a data flow graph with a single edge to each input port is called
data flow analysis. When no loops are present, this is a straightforward and
fast process, well known from compiler technology. See, for example, the pro-

www.manaraa.com

28 CHAPTER 2

Procedure swap(a,b)

begin h = a;

a = b;

b = h;

a b

end
a b

Figure 2 The swap algorithm and its data flow graph.

e1 e2

/
d e3

e4
/

tz

a b

x = a-b;
d++;
Z = el+e2+e3+e4;

Figure 3 Simple expressions and their data flow graphs.

cedure swap which exchanges its two arguments in figure 2. However, when
potentially data-dependent loops including indexed variables are present, the
analysis becomes much more complex. This problem is addressed in chapters 4
and 5.

Expressions are built by using operation-type nodes and data edges. An opera
tion node contains one or more input ports and one or more output ports. The
translation of a few simple expressions is given in figure 3. Note that the ports
must be annotated for the inputs of the "-" operator node. Obviously, tree
height reduction can optionally be applied to the resulting data flow graphs,
shortening, for instance, the path length through the adders.

Operation and procedure nodes

Procedures are used for a hierarchical description of a design or to break down
the description into several smaller parts. A procedural description results
in a graph that describes the behavior or semantics of the procedure. The
instantiation (call) is done with a node whose type corresponds to the name of

www.manaraa.com

Behavioral specification for synthesis 29

'\
\
\
\
I
I
/

/

,
body

11

0,

/
/
I
I
\
\
\
'\

Figure 4 a) Flow graph with a procedure call; b) Procedure definition.

Figure 5 a) Branch node; b) Merge node.

the graph. The behavior of the instantiation is by definition identical to the
in-place expansion of the graph contents.

Each instantiation node belongs to the class of operation type nodes, or equiv
alently, an operation node is an instantiation of an implicitly predefined graph.
The ports of the node correspond to the input and output nodes of the corre
sponding graph (see figure 4).

Conditional statements

A graph construct for a multiway conditional case statement is available, which
is also used for representing simple if-then(-else) statements. The sub-graph
which implements the test expression delivers a data token, whose value selects
one of several subgraphs to be executed. This is implemented by branch and
merge nodes, which route incoming tokens to one of the subgraphs, and gather
the tokens again to a common output for later use (see figure 5).

www.manaraa.com

30

body 0 body 1 body n-1

t 1

CHAPTER 2

• •
test-body

Figure 6 Template for conditional statements.

A branch node executes when tokens arrive at the data input and the control
input. According the value of the control token, one of the output ports is
selected to pass the token from the data input. The output port selected is
identified by a table look-up with the control value.

A merge node, on the contrary, executes when a token has arrived on its control
input and a token has arrived on the port identified by the value of the control
token. After the execution of the merge node the token on the selected input
is passed to the output.

For the construction of a conditional structure, all bodies are investigated and
for each needed input value, a branch node is created. For each computed value
that is used later outside the conditional construct, a merge node is created.
Then, all control inputs of both the branch and merge nodes are connected to
the result of the test expression (see figure 6).

Loops

For the implementation of loop constructs, the entry and exit control nodes are
used, which are similar to merge and branch nodes. Figure 7 shows the graph
structure of a while-do-Ioop. A do-while loop (where the body is always exe-

www.manaraa.com

Behavioral specification for synthesis

Figure 7 Example of a while-do loop. Figure 8 A constant node.

31

cuted at least once) is easily made by moving the loop body into the downward
edges. To obtain the proper executional semantics, the semantics of the entry
nodes define that an initial token, choosing the external entry in the loop, is
placed at their control input at graph initialization time.

Constants

For the generation of constant values in the algorithmic description, constant
nodes are defined. These nodes deliver the (specified) constant value to their
output port when the nodes are executed, and can be regarded as unary oper
ators. A sequence edge is connected to deliver the enabling token; see figure 8.

Input/Output

For the data flow graph, a provision for communication with the external (non
DFG) world is made by get and put nodes. These nodes respectively read from
and write to physical terminals. During synthesis, these nodes are mapped on
hardware modules, whose implementation can depend upon the semantics of
the external world (straightforward pass-through, handshake, bus resolution).
In general, several get and put nodes operate on a single physical terminal.
To group these nodes together and fix the sequential ordering of the I/O op
erations, they are serially linked with sequence edges. This path of sequence
edges can be continued through conditional constructs, loops, and procedure
instantiations. Therefore, the path always starts and ends at an input and out-

www.manaraa.com

32

sequence

in
sequence

+ sequence

data

u

/Mquence

ou

CHAPTER 2

Isequence

s

sequence

sequence.

Figure 9 I/0 operations. Figure 10 Array operations.

put node, respectively. See figure 9 for a graph corresponding to the following
statements:

Terminal p;
x = Get(p);
y = x + 3;
Put(p, y);

Arrays

An array node establishes a (possibly multidimensional) array of values. It is
activated by an incoming sequence edge, like a constant node. The array values
can be read or written by subsequent retrieve or update nodes, respectively.
Initially, these nodes will probably occur in a serial chain of sequence edges,
starting at the array node; see figure 10. If it is possible to determine a (partial)
independence between the update and retrieve nodes by analyzing the applied
index expressions, the chain can be transformed into a rooted directed acyclic
graph, allowing more freedom for the synthesis process.

www.manaraa.com

Behavioral specification for synthesis

3 DFG semantics

33

As explained in the previous section, the data flow graph has an executional
semantics. The semantical definitions were chosen to obtain a set of desirable
properties. Assume that a DFG satisfies the following rules:

• All input ports of all nodes have exactly one incoming edge.

• The conditional and loop constructs partition the graph in separate bodies,
as outlined in figures 6 and 7.

• The graph becomes acyclic by detaching all edges into delay nodes and
entry nodes (except for leaving the edge at the entry port 0 which externally
feeds the loop; see figure 7).

• If an operation node is executed, it fetches precisely one token from each
input, and generates precisely one token at each output port.

Then, the following properties can be formally proven [7J:

• If a graph is provided with one token at each input node, nodes in the graph
can be executed until finally one token appears at each output node. (As a
consequence, the graph can be instantiated elsewhere as operation node.)

• If so desired, the execution order can be chosen in such a way that at most
one token is at any edge at any time.

• The result of the graph execution (the data values in the final tokens) does
not depend upon the chosen order in which the nodes are executed.

• After execution of the graph, no tokens remain in the graph, except re
placements for the tokens that were inserted at initialization time (i.e., the
tokens at the control inputs of the entry nodes, and at the inputs of the
delay nodes).

• If a sequence (queue) of tokens is provided for each input node, again nodes
can be executed in any chosen order, resulting in a unique queue for each
output node. (The different sets of input tokens can never intermix or
influence each other.)

This last property is useful for studying pipelined or multithreaded architec
tures. Together with the more flexible I/O, it compares favorably with the
otherwise resembling approach of SIL [11J.

www.manaraa.com

34 CHAPTER 2

The defined executional semantics is based on presence and passing of tokens
(discrete data values), and thus fixes an algorithmic behavior. On purpose,
nothing is said about time. This leaves maximal freedom to optimize timing
aspects during synthesis, without disturbing the algorithmic behavior. For
example:

• Although the execution of loops seems to be sequential by nature, it is
perfectly legal to have all iterations of the body executed in a single clock
cycle. Also with real sequential executions, for instance one variable of
the loop can cycle with twice the iteration speed of another variable in the
same loop.

• The time needed to execute an operation is not a property of the data flow
node, but instead a property of the hardware module that is assigned to
execute that node. As a result, different nodes of the same operation type
can be assigned to different hardware modules, which behave differently
over time.

• If an operation with three inputs and two outputs executes, it consumes
three input tokens and produces two output tokens. Seen in time it might
first consume two tokens, then produce one output token, then eat the
third token, and finally produce the last output token.

Besides as a property of the hardware modules, time can come in as designer
specified constraints. These are added into the graph as sequence edges, labeled
with the time constraints. A detailed coverage falls outside the scope of this
chapter.

4 DFG textual format

To store and exchange the data flow graphs, a text-based format is used [16].
This permits an easy interface to various programming languages and transfer
between different machines. The brace-oriented syntax style using a pair of
braces for each keyword (like Lisp and EDIF) ensures simple parsing: any LL-1
parser, such as a recursive descent parser, is strong enough. It furthermore
permits local and future extensions to the format, without disturbing already
existing software (both upwards and downwards compatibility), and does not
require a set of reserved words forbidden as identifiers.

www.manaraa.com

Behavioral specification for synthesis 35

The basic format is very simple: every statement forms a list. Any list starts
with an opening brace and a keyword on which the application determines its
interest in the list. The items of the list are names, numbers, and other lists, and
the list is terminated with a closing brace. If an application is not interested in
the information attached to the keyword-or does not recognize the keyword
it can skip this list, without knowing anything about its (structured) contents,
by just counting braces. Hence, every tool or site is free to add more data for its
own purpose. This property was considered highly important. The following
fragment gives an impression of the textual format:

(dfg-view
(graph fdct

(node N-10 (type +)

(in-edges E-9 E-8) (out-edges E-34 E-28»
(edge E-34 (type data) (varname XO)

(origin N-10) (destination N-23 (port left»)
(edge E-28 (type data) (varname XO)

(origin N-10) (destination N-20»
(node N-11 (type +)

(in-edges E-11 E-10) (out-edges E-32 E-30»

5 Recent developments

During the last year of ASCIS, the DFG format was extended to support inter
mediate or full synthesis results, and a standard way to include and describe
libraries was introduced. Such an extension greatly enhances possible cooper
ation between the partners, by allowing the comparison or use of each other's
algorithms for individual synthesis steps (scheduling, allocation, binding, and
network generation). The extension is basically made by adding two new types
of graphs, a control graph (CTG) and a network graph (NWG), next to the
existing data flow graph. Whereas the DFG defines the algorithmic behavior,
the CTG fixes the timing behavior and hints on the controller design, and the
NWG defines the hardware on which the algorithm executes: the final synthesis
result. All these extensions have not yet been incorporated into the systems of
the ASCIS partners.

www.manaraa.com

36

a b

left right

--+

- - - -

x

/

right

c

CHAPTER 2

abc

Figure 11 The control, data flow, and network graphs.

The control graph basically corresponds to the finite state diagram, as com
monly drawn for controllers. However, we extended its semantics to allow
concurrent multiple active states, and hierarchical structuring of such graphs.
This allows multithreaded operation, as used, for instance, in chapter 9. The
result of scheduling can now be expressed as links between DFG and CTG
nodes.

The network graph describes the final network that results from the architec
tural synthesis. The nodes in the graph correspond to physical modules to be
used in the final architecture. Initially, the graph might contain a set of nodes
only (no edges), indicating the set of hardware modules on which the algorithm
must be executed: the result of module allocation. Later, links between DFG
nodes and NWG nodes indicate which operations are mapped onto which mod
ules: the result of binding. Similar notions hold for register files and busses.
Finally, the fully interconnected network follows as result. These node links
are shown in a tiny example in figure 11.

Besides links between nodes, links between graphs are supported. These express
relations such as "this DFG is controlled by this CTG," or "this NWG is a
possible implementation of this DFG." These graph links allow, together with
the hierarchy concepts, the description of the synthesis library (operations,
modules, and their relations) in the same terms, by adding a DFG without
body for each operation and a NWG without body for each module.

A programming interface has been developed to manipulate these sets of graphs,
suitable to be used in all tools, with the following features:

www.manaraa.com

Behavioral specification for synthesis 37

• The interface provides functions to access and manipulate graphs in the
three domains (data flow, control, network), and the links between them.
The consistency of the data structures is enforced by the interface.

• No assumptions are made on the actual high-level synthesis method used
or on the order of solving different subproblems. The basic functionality
is sufficient to represent any partial synthesis result.

• Each application can extend the provided data structure for its own needs
by means of object inheritance. This does not affect the functionality of the
library. In particular, the writer and parser accept the extension without
the need for recompiling the interface library.

• The interface has a parser and a writer to exchange data between tools
as textual files. Data added by one application remain hidden for other
applications that are not prepared to use them.

3 INPUT SPECIFICATION LANGUAGES

Ideally, the same language should be used at all points in the synthesis process.
Unfortunately, different purposes in language usage tends to result in language
requirements which cannot be reconciled. In particular, for high-level synthesis
the following two purposes are important:

• For human specification of the input to high-level synthesis, the important
language features are conciseness and portability. Standard languages,
such as VHDL, are well suited for this purpose.

• For internal use in the synthesis tools, simple and well-defined languages
are highly desirable. The token flow model described above is particularly
well suited for this purpose.

Because of this dichotomy in the language requirements, several languages must
be used. This imposes the condition that either all the languages support
the same interface semantics, or the language definitions provide an external
conversion methodology between the interface protocols. For both the behavior
defined on the interface and the internal behavior of a block, specification of
the desired behavior must consider both functionality, sequencing, and timing.

Three hardware description languages were of particular interest as input lan
guages in the ASCIS project: SILAGE, HARDWAREC, and VHDL.

www.manaraa.com

38 CHAPTER 2

1 Silage

SILAGE has relatively old roots-it was conceived around 1983-and was specif
ically designed to drive synthesis systems [10]. The language specifies behavior
in a functional style, where each variable is assigned only once, and is geared
towards real-time digital signal processing applications, for which it permits
a very compact specification. The language implicitly assumes an outer loop
which infinitely repeats over time, presenting a new set of input data values for
each execution. A compact and elegant "delay operator" is used to reference
values from previous execution phases. As basic data types, the language sup
ports 2's-complement integers, fixed-point numbers of any specified precision,
and bitvectors. Powerful constructs are available to handle arrays, and the
language has conditional statements, loops, and functions. Loops are expected
to be manifest, i.e., the loop bounds can be evaluated at compile time and do
not depend on run-time data values.

2 HardwareC

HARDWAREC is designed to drive architectural synthesis over a large spec
trum of application areas [8]. It features both a procedural part to describe
algorithmic behavior and a declarative part to describe a network of intercon
nected components. For communication between concurrently active processes,
it furthermore explicitly supports message passing channels. In the algorithmic
part, the language basically supports only bitvectors for data; these may be
interpreted as 2's-complement integers. Loops and bitvector indices must be
resolved at compile time, and the language lacks an array construct. Support
is provided for explicit specification of timing constraints.

To overcome some of the limitations, the ASCIS group at Darmstadt has devel
oped an enhanced HARDWAREC with more advanced data types (e.g., arrays
are allowed). However, the support for network structures was dropped. See
chapter 8 for a description of the Darmstadt synthesis system.

3 VHDL

VHDL was approved as an IEEE standard in 1987 and has gained considerable
momentum in the last few years [18, 1]. The language model can be described
as a network of interconnected components, each of which has an algorithmi
cally described behavior. The expressive power of the language is very large:
all basic data types, including subranges, records, and arrays, are supported;

www.manaraa.com

Behavioral specification for synthesis 39

overloading permits operators and functions to be redefined for different data
types; and powerful configuration control statements are provided. Even con
structs difficult to realize in hardware, such as file access, unconstrained arrays,
and dynamic memory allocation, are provided.

The expressiveness makes the language attractive for many applications, and
allows, for instance, its use for both the synthesis input (the algorithm) and
the output (the synthesized architecture). Using commercial simulators, it is
then possible to simulate both the specification and the implementation within
the same environment.

At the time VHDL was designed, the main objective of the language was to
describe and simulate the input/output behavior of an existing hardware mod
ule. As a consequence, the semantics of VHDL was based on the concept of the
event-driven hardware simulator:

A process is activated when an event (typically a signal edge) occurs
on an input signal. The process then executes its algorithm in zero
time, possibly changing some output signals. The effect of the output
signal changes may be delayed by a specified time.

Unfortunately, this choice of semantics makes VHDL ill-suited as a language for
high-level synthesis: a rigorous implementation of a VHDL design must conform
to the behavior of the VHDL source code as defined by the VHDL Language Ref
erence Manual, down to each delta-time unit. This would effectively require the
implementation of a VHDL simulator kernel in the hardware, which is obviously
neither feasible in practice nor the purpose of hardware synthesis. An addi
tional problem is the large size of VHDL, which makes the design of synthesis
tools unnecessarily difficult.

Consequently, VHDL is not a viable choice for a high-level synthesis input lan
guage. Rather than choosing an entirely different language, however, there is
an alternative: to select a subset of VHDL. Due to VHDL'S status as a standard
and its broad acceptance, this option received special attention in the ASCIS

project.

www.manaraa.com

40 CHAPTER 2

4 To subset or not to subset

There are several major advantages in creating an embedded language with
VHDL as the base language:

• It becomes possible to perform mixed-level simulations on partly synthe
sized descriptions.

• Choosing an industry standard language makes it easier to overcome the
university/industry barrier.

• It is easier to steal a language than to design one, provided that one can
avoid conflicts in the semantics.

The main consequence of selecting a subset of VHDL'S syntactics is the pos
sibility of applying a different interpretation to the subset, i.e., it is possible
to choose semantics that are usable for synthesis. The main disadvantage of
subsetting VHDL is, of course, a loss of portability since different tools may
utilize different subsets.

When a new language is created, it is obviously necessary to ensure that the
semantics of the language are well defined. Less obvious, perhaps, is that this
is true also for embedded languages: it is extremely important to define exactly
which parts of the original language are part of the new language, and what
extensions are introduced. Failure to do so results in ambiguities, which lead
to interpretation errors and descriptions that cannot be carried between tools.

A particularly important requirement is to preserve the input/output behavior
of the original language (for the chosen subset), with respect to some abstrac
tion of the interface to the external world. L. Berrojo et al. [2] suggest a
subset somewhat similar to that presented in the following subsection, but the
interpretation of their subset violates this cardinal rule.

5 ProcVHDL: semantics for synthesis

PROCVHDL [4] is a subset of VHDL intended to be used as an input language for
high-level synthesis. As mentioned in the previous subsection, it is possible to
choose a new interpretation for a syntactical subset. In the case of PROCVHDL,

the new semantics are based on the following hardware model:

www.manaraa.com

Behavioral specification for synthesis

The design and its environment are modeled as procedural functional
units in a hierarchical network, communicating by level-sensitive, asyn
chronous protocols.

41

In order to ensure preservation of the input/output behavior between the VHDL

and the PROCVHDL interpretation, the following abstraction is imposed on the
interface:

Only the sequencing of input/output events is considered as important
(i.e., the exact timing is ignored).

This abstraction is acceptable for the kind of systems PROCVHDL was designed
to specify: systems employing only asynchronous protocols. l Despite the fact
that the semantics of VHDL and PROCVHDL differ considerably, it turns out
that PROCVHDL actually matches quite well with a subset of VHDL:

• The hierarchical network of PROCVHDL matches the component instan
tiation concept for structural descriptions in VHDL, with communication
carried out by simple VHDL signals. This match would in fact be possible
for most simulator-based languages, and is mainly a consequence of the
choice of asynchronous communication protocols in the hardware model:
this model places very few restrictions on the actual low-level signal be
havior.

• The procedural model for functional units used by PROCVHDL are well
matched by the behavioral descriptions in VHDL, whereas the functional
descriptions of many older hardware definition languages have insufficient
expressive power.

It should be noted that even as the asynchronous communication of PROCVHDL

may be embedded in VHDL'S event-based semantics, it may also be built on
top of synchronous hardware. In fact, a likely implementation of a PROCVHDL

functional unit is a synchronous finite state machine with an attached data
path.

lSeveral other subsets have been suggested for synchronous systems [13, 15].

www.manaraa.com

42 CHAPTER 2

6 The ProcVHDL language definition

This section describes the PROCVHDL subset. The description is far from
complete, but a more detailed description, including a full syntax specification,
is given elsewhere [3]. The two main subsetting restrictions in PROCVHDL is on
the WAIT and signal assignment statements. These restrictions are described
below.

The PROCVHDL WAIT statement is strongly restricted compared to the VHDL

counterpart. Only two forms are permitted:

1. WAIT UNTIL BooleanSignal [OR BooleanSignal. ..];

2. WAIT FOR Time;

The first construct is used to synchronize with external events. The execution is
suspended until one or more external signals becomes active. The second form
is used to sequence output signals. A WAIT for any length of time indicates
that a given set of output signals must change before any other signal changes.
Note that the actual time specified is without importance, though it may be
useful to pace simulation of the circuit.

Notice that WAIT ON (sensitivity lists) are eliminated. Also, WAIT UNTIL
with more than a single signal is further restricted: this statement must be
bracketed by an IF statement with the negated condition. This is caused by
the fact that VHDL (and PROCVHDL) requires a level change to break a WAIT.
This is not, in general, compatible with level-sensitive interface protocols.

The other restriction on the process statements of VHDL is on the signal as
signment statement. PROCVHDL does not allow the VHDL AFTER clause
that is used for timing specifications-the focus of PROCVHDL is sequencing,
not timing. Also, the following restriction is imposed on signal assignments in
PROCVHDL: it is illegal to assign twice to the same signal without an interven
ing WAIT statement. (The first assignment could, of course, be ignored, as it
would be in VHDL, but permitting the construct would make analysis difficult.)

www.manaraa.com

Behavioral specification for synthesis 43

WHILE Count < Max AND {Z.R * Z.R + Z.I * Z.I)/Unit < 4*Unit LOOP
Temp := {Z.R * Z.R - Z.I * Z.I)/Unit + C.R;
Z.I := 2 * Z.R * Z.I/Unit + C.I;
Z.R := Temp;
Count := Count +1;

END LOOP;
Iterations <= Count -1;

WAIT for 1 ns;
Strobe <= TRUE;
IF NOT Acknowledge THEN WAIT UNTIL Acknowledge; END IF;

Figure 12 A PROCVHDL fragment.

1 A ProcVHDL example

Figure 12 shows an excerpt from a PROCVHDL specification. While this is
a small toy example, a baseline JPEG encoder/decoder has been specified in
about 2000 lines of code [9], demonstrating the feasibility of PROCVHDL for
reasonably complex specifications. The example displays a typical property of
PROCVHDL code: the input/output specification is intertwined with the general
control flow, similarly to the way data and control flow are intertwined in the
DFGs described in section 2. This is different from the typical synchronous
modeling style in VHDL, which tends to separate the control flow from the
input/output operations, thus cluttering up the model (from a human point of
view) and increasing the risk of specification errors.

4 CONCLUSION

In the ASCIS project, a data flow graph standard has been developed, targeted
towards high-level synthesis. Its coherent representation of both data and con
trol flow and its independence of timing aspects provide extreme flexibility for
transformations and optimizations during synthesis. Furthermore, the specifi
cation is accurate enough to allow formal reasoning about its behavior. These
data flow graphs are appropriate over a large range of application domains, can
be generated from different designer specification languages, and are therefore
suitable as interchange medium. The concept of a DFG will recur frequently
in the subsequent chapters.

www.manaraa.com

44 CHAPTER 2

VHDL is not immediately suitable as a designer specification language, due to its
event-driven semantics and inherent overspecification of timing. A subset which
adheres to the original semantics of VHDL has been developed to overcome
this problem. This is achieved by restricting the interprocess communication
to asynchronous protocols, thus defining only the sequencing of input/output
events.

REFERENCES

[IJ J.-M. Berge, A. Fonkoua, S. Maginot, and J. Rouillard. VHDL Designer's
Reference. Kluwer Academic Publishers, Dordrecht, Netherlands, 1992.

[2J L. Berrojo, P. Sanchez, and E. Villar. High-level synthesis and simulation
with VHDL. Proc. of Second European Conference on VHDL Methods,
Stockholm, Sweden, pages 62-69, Sep 1991.

[3J J. P. Brage. Proc VHDL: A VHDL subset for high-level synthesis. Techni
cal report, Dep. of Compo Sc., Technical University of Denmark, Lyngby,
Denmark, Jun 1991.

[4J J. P. Brage. Hardware description languages for synthesis: problems and
possibilities. Proc. of Tenth NORCHIP Seminar, Helsinki, Finland, pages
22-29, Nov 1992.

[5J R. Camposano and W. Rosenstiel. Synthesizing circuits from behavioural
specifications. IEEE Trans. on Compo Aided Design, CAD-8, number 2,
pages 171-180, Feb 1989.

[6J G. G. de Jong. Verification of data flow graphs using temporal logic. In L. J.
M. Claessen, editor, Formal VLSI Correctness Verification, VLSI Design
Methods-II: proc. of the IMEC-IFIP WG10.2 WG10.5 Int. Workshop on
Appl. Formal Methods for Correct VLSI Design, pages 169-178, North
Holland,1990.

[7J G. G. de Jong. Generalized data flow graphs: theory and applications. To
appear as PhD thesis. Eindhoven Univ. of Tech., Eindhoven, The Nether
lands, 1993.

[8J G. De Micheli and D. C. Ku. HERCULES-a system for high-level syn
thesis. Proc. of the 25th Design Autom. Conf., Anaheim, CA, Jun 1988.

[9J K. Djigande. Image compression and decompression, system architecture.
Master's thesis, Dep. of Compo Sc., Technical University of Denmark, Lyn
gby, Denmark, Jul 1992.

www.manaraa.com

Behavioral specification for synthesis 45

[10] P. Hilfinger, J. Rabaey, D. Genin, C. Scheers, and H. De Man. DSP speci
fication using the SILAGE language. IEEE Int. conf. on Acoustics, Speech
and Signal Processing, pages 1057-1060, Apr 1990.

[11] Th. Krol, J. van Meerbergen, C. Niessen, W. Smits, and J. Huisken. The
Sprite Input Language, an intermediate format for high level synthesis.
Proc. of Eur. Conf. on Design Automation (EDAC), Brussels, Belgium,
pages 186-192, Mar 1992.

[12] J. S. Lis and D. D. Gajski. Synthesis from VHDL. Proc. of the Int. Conf.
on Camp. Design, pages 378-381, 1988.

[13] A. Postula. VHDL specific issues in high level synthesis. Proc. of Second
European Conference on VHDL Methods, Stockholm, Sweden, pages 70
77, Sep 1991.

[14] L. Stok. Architectural Synthesis and Optimization of Digital Systems. PhD
Thesis, Eindhoven Univ. of Tech., Eindhoven, The Netherlands, 1991.

[15] A. Stoll, J. Biesenack, and S. Rumler. Flexible timing specification in a
VHDL synthesis system. Proc. of EURO-DAC '92, Hamburg, Germany,
pages 610-615, Sep 1992.

[16] J. T. J. van Eijndhoven, G. G. de Jong, and L. Stok. The ASCIS data flow
graph: semantics and textual format. Technical report 91-E-251, Eindhoven
University of Technology, Jun 1991.

[17] A. H. Veen. The misconstrued semicolon: reconciling imperative languages
and dataflow machines. PhD Thesis, Eindhoven University of Technology,
The Netherlands, 1985.

[18] IEEE Standard VHDL Language Reference Manual. IEEE Std. 1076-1987,
The Institute of Electrical and Electronics Engineers, Inc., New York, USA,
1988.

[19] R. A. Walker and D. E. Thomas. Design representation and transformation
in the system architect's workbench. Proc. of the Int. Conf. on Camp.
Aided Design, pages 166-169, 1987.

www.manaraa.com

3
FORMAL METHODS FOR

SOLVING THE ALGEBRAIC PATH
PROBLEM

Alain Darte, Tanguy Risset, Yves Robert

Ecole Normale Superieure de Lyon

ABSTRACT

This chapter deals with the interplay between algorithm design and synthesis
methodologies. The algebraic path problem is used throughout the text as
a target computational kernel. First, we present pioneering and state-of-art
systolic implementations; then, we describe how synthesis methodologies have
been extended (space-time optimality, partitioning techniques) to cope with
advances in the algorithmic field.

1 INTRODUCTION

This chapter focuses on the architecture study for a basic algorithm kernel-the
algebraic path problem (APP)-that we have been investigating during NANA.

Our goal in this chapter is threefold:

• Introduce the need for novel design methodologies and synthesis techniques
for regular array processor architectures.

• Survey the progress that has been made in the field.

• Illustrate the cross-fertilization between parallel VLSI algorithm and ar
chitecture design and synthesis methodologies.

47

www.manaraa.com

48 CHAPTER 3

Section 2 is devoted to a brief presentation of the APP and its applications in
computer science and electrical engineering. Section 3 surveys the pioneering
developments that led to the first systolic solutions of the APP. Next, section 4
presents the very efficient-and accordingly very complex-solutions that have
been derived during NANA. In section 5 we first explain the problems that pre
vent a direct automatic synthesis of these solutions (non-uniform dependences,
anti-dependences, ...), and the developments that were proposed to cope with
these problems (localization, re-indexing, ...). Then, we address the space
time complexity issues that permit an evaluation of the resulting architectures,
and give partial solutions to the support of the architectural mapping process,
both from an algorithmic and a methodological point of view. Finally, we deal
with array partitioning issues in section 6.

Rather than dealing with technical details, we present problems and give an
insight to their solution. Throughout the text, we refer to the corresponding
NANA results and publications.

2 THE ALGEBRAIC PATH PROBLEM

1 The APP formulation

Path problems are ubiquitous in computer science. The algebraic path problem
(APP) is a general framework that unifies several algorithms arising from var
ious fields of computer science. It is defined as follows [35]: given a weighted
graph G = (V, E, w), where V is a finite vertex set, E an arc set, and w a
function w : E -+ H with weights from a semi-ring (H, Ee, 0) with zero 0 and
unity 1; find for all pairs of vertices (i,j) the quantities

di,j = EB w(p)
pEMij

where M ij denotes the set of all paths from i to j. To the weighted graph
(V,E,w), we associate the n x n weight matrix A = (aij), where aij = w(i,j)
if (i,j) E E and aij = 0 otherwise. We denote by Mi~ the set of all paths from
i to j which contain only vertices x with 1 ~ x ~ k as intermediate vertices. In
practice, a~.j = EBpEMk w(p) is equal to the successive values of aij which we

'J

want to compute, starting from the initial value aij(O) = aij up to aij(n) = dij.
The solution to the APP problem can be obtained by a direct generalization
of the Gauss-Jordan diagonalization algorithm to compute the inverse of a real
matrix:

www.manaraa.com

Solving the algebraic path problem

for k := 1 to n do

begin

ak ._ (ak - 1)*.
kk'- kk ,

for i := 1 to n, i l' k do

a k .- a k - 1 10>. a k .
ik .- ik '01 kk'

for j := 1 to n, j :/; k. do

begin

for i := 1 to n, i l' k do
begin

k k-1 k k-1
a ij := a ij EB a ik ® u kj

a k .- a k 10>. a k - 1 .
kj .- kk '01 kj ,

end

end

end

In the computational procedure we have let c* = EBi~O ci for c E H.

2 Applications of the APP

49

Applications of the APP are obtained by specializing the operations ffi and I8i
in the appropriate semi-rings. Let us mention three of them:

• Determination of the inverse of a real matrix:

A is a real matrix, EB and ® are the usual operations in H, and ® is
defined by: if c :/; 1 then c* := 1/(1- c). The APP algorithm outputs the
inverse matrix (I - A)-l. Of course, straightforward modifications permit
to compute A-1 directly.

• Shortest distances in a weighted graph:

The weights aij are taken in H = H u (-00, +00), EB is the addition in H
extended to H (with -00 EB 00 = +00), ® is the minimum, and * is defined
by: if c ~ a then c* := a else c* := -00.

• Transitive and reflexive closure of a binary relation:

The aij are boolean, EB and ® are respectively the and and or operations,
and * is defined by: c* := 1 for all c.

This short list demonstrates the great importance of the APP in computer
science, particularly in statistical data analysis and control engineering. Many

www.manaraa.com

50 CHAPTER 3

practical applications, such as on-line data analysis for robust robot or vehicle
control (to mention a single one), rely on shortest-path computations as a key
computational kernel.

3 PIONEERING SYSTOLIC APP DESIGNS

1 Initial designs

From 1980 to 1985, several authors have presented systolic arrays for solving
special instances of the APP, such as transitive closure or matrix inversion.
The first systolic array introduced in the literature for solving a specialized
instance of the APP is the two-dimensional (2-D) toroidal array of Guibas
Kung-Thompson (17]. It is restricted to computing the reflexive and transitive
closure of a binary relation. This array has been extended to solving other graph
algorithms (shortest paths, connected components) by Ullman [36]. The first
solution to the general APP was presented by Rote [35]: this solution was based
on a clever extension of the Kung-Leiserson array for band LU decomposition
[21]; it is a hexagonally connected systolic array of (n + 1)2 processors that can
solve any instance of size n of the APP within 7n - 2 time steps. One time step
corresponds here to a multiply-and-add or a star operation in the underlying
algebra.

In table 1, we summarize the characteristics of several published solutions for
the APP. The execution time includes loading and unloading of the matrix
coefficients. The area is expressed as the number of elementary cells. The pe
riod is defined as the minimum time P between the solution of two consecutive
instances of the problem.

2 Improving Rote's solution

In table 1, we see that the price to pay for dealing with the general APP seems
to be an increase in execution time from 5n up to 7n. In fact, rather than
dealing with the above formulation which is close to in-place matrix inversion,
several authors had the idea to use an augmented matrix. We can derive an
equivalent formulation by padding the matrix A with two copies of the identity

matrix: A := (t I;). Now operating on the new 2n x 2n matrix A, we

have the following algorithm, which is closer to the Faddeev algorithm [18]:

www.manaraa.com

Solving the algebraic path problem 51

I Reference I Application I Area I Time I Period I
Guibas & al. [17] Transitive closure n2 6n 4n
Lakhani-Dorairaj [16] Shortest paths n2 5n n
Kung-Lo [24] Shortest paths n2 7n 3n
Kramer-Leeuwen [25] Matrix inversion n2 6n 5n
Nash-Hansen [18] Matrix inversion 1.5n2 5n n
Robert-Tchuente [33] Matrix inversion n2 5n n
Rote [35] General APP n2 7n 5n

Table 1 Pioneering arrays solving the APP.

for k := 1 to n do

begin

ak . (ak - 1)*.kk'= kk ,

for i := k + 1 to k + n do

a k .- a k - 1 ,QI a k .
ik'- ik '01 kk'

for j := k + 1 to k + n do

begin

for i := k + 1 to k + n do
begin

k ._ k-l k k-l .
aij .- aij EB a ik ® a kj ,

k ._ k ,QI k-l .
a kj .- akk '01 a kj ,

end

end

end

The solutions of Robert-Trystram [34] and Kung-Lo-Lewis [23] (later extended
by Lewis-Kung [22] to cope with the general APP) are very similar. Both can
be viewed as extensions of the rectangular Ahmed-Delosme-Morf array [1] for
dense matrix triangularization. The array of Delosme [14] is quoted for the
sake of completeness: Delosme uses a completely different algorithm (a path
algebra extension of the Bareiss algorithm) for solving the APP.

The operation of the Robert-Trystram array is represented in figure 1. Circu
lar cells are devoted to * operations while rectangular cells perform EB and ®
computations.

www.manaraa.com

52

1
0 0

0 1 0
0 0 0 0
0 1 0 a44

0 0 a34 a43

1 a24 a33 a42

a14 a23 a32 a41

a13 a22 a31

a12 a21

all

Figure 1 A rectangular array for the APP.

4 ADVANCED SYSTOLIC APP DESIGNS

1 Folding the array

CHAPTER 3

The best area-time tradeoff for solving an instance of the APP of size n seems to
be 5n units of time and n2 cells; hence the area-time product is 5n3 • Among the
architectures that achieve this tradeoff, the one of Kung-Lo-Lewis [23] has the
smallest period P = n (the solution of a new instance of the APP can begin
every n steps). Rote [35) has shown that 5n units of time is asymptotically
optimal under the hypothesis that no coefficient aij is duplicated in the array.
Note that the architecture of Delosme [14] requires 4n time-steps and 5n2 /4
cells; hence the area-time product is 5n3 for this architecture, too.

Benaini, Robert, and Tourancheau [4) showed how to decrease the area-time
product by a factor of two: they introduce a 2-D toroidal array of only n2 /2
processors that can solve any instance of the APP in 5n time-steps. The main

www.manaraa.com

Solving the algebraic path problem 53

idea is the use of the torus topology that allows the data to re-enter the array
after crossing it a first time, just as in the pioneering array of Guibas-Kung
Thompson [17].

Nothing comes for free, though! The price to pay for the folded array is a period
of P =4n against a period P =n for Kung-Lo-Lewis [23]. Also, partitioning
issues are more involved, since acyclic implementations usually exhibit more
favorable characteristics with respect to fault tolerance, two-level pipelining,
and problem decomposition in general (Hwang and Cheng [9], Kung and Lam
[20]). However, the number of cells in the folded array is half that of Kung-Lo
Lewis, and this is a considerable improvement.

2 Obtaining space-time minimality

In latency-limited applications, the important criterion is the execution time
T. This is in contrast to the real-time signal and data processing applications,
where the period P is more important. Solutions for the latter category are
the focus of chapters 5 and 6. In this chapter, the latency-limited case will be
addressed. Even though a large part of the underlying theory can be shared,
important distinctions will be pointed out.

Following Cappello [6], we have the following two definitions for space-time
minimality:

Definition 3.1 A schedule is time-minimal when the number of time-steps is
equal to the length of a longest path in the dependence graph (which is clearly
the minimal time needed to achieve the computation).

Definition 3.2 A systolic array is space-time-minimal when it is scheduled in
minimal time and when it uses the minimal number of processors among all
possible minimal-time solutions.

Theoretical considerations show that any systolic array that solves the APP
using the previous formulation requires an execution time T ~ 5n - 2 time
steps.

www.manaraa.com

54 CHAPTER 3

I Area ITime I Period II Application

Robert-nystram [34] General APP n 2 5n 2n
Kung-Lo-Lewis [23] nansitive closure n2 5n n
Lewis-Kung [22] General APP n2 5n n
Delosme [14] General APP 1.25n2 4n n

IReference

Table 2 Comparison of some systolic arrays solving the APP.

Proposition 3.1 There is one unique time-minimal schedule.

The proof is given elsewhere [3].

All the arrays listed in table 2 are scheduled with the time-minimal sched
ule; hence their execution time 5n - 2 is optimal. A natural question arises:
what is the minimal number of processors that a time-minimal systolic solution
requires?

When discussing processor allocation, we usually insist that the target design
should be regular and locally connected, and therefore, linear allocation func
tions (see also section 5) have been considered by several authors dealing with
automatic synthesis methods. If we find a non-linear allocation function that
requires fewer processors, then the resulting solution is not guaranteed to be as
regular as the pure systolic schemes. However, finding the minimum number of
processors for any allocation function will give us a lower bound of what can
be achieved, and this will give us an indication on the efficiency of our favorite
solutions.

if n mod 3 =0 or n mod 3 = 1
if n mod 3 = 2

Proposition 3.2 The minimum number of processors A(n) for the solution of
an instance of the APP of size n in optimal time T(n) = 5n - 2 is A(n) =
n 2 /3 + O(n). More precisely:

A(n) = n(n~2)+3

A(n) = n(n~2)+l

The proof is given elsewhere [3].

www.manaraa.com

Solving the algebraic path problem 55

I Reference IApplication I Area ITime IPeriod I
Benaini et al. [34J General APP n2 /2 5n 2n
Cappello-Scheiman [7J General APP n2 /3 5n 3n
Benaini-Robert [3J General APP n2 /3 5n 3n
Delosme [14J General APP 1.25n2 4n n

Table 3 Comparison of some systolic arrays solving the APP.

The best array that we have seen so far requires A =n2 /2 +O(n) cells. Hence,
there remains a gap of n2/6 cells to suppress with this optimal A(n). This is
achieved by the array proposed by Benaini and Robert [3J. We can add the four
rows of table 3 to table 2. The array of Cappello-Scheiman [7J is very similar
to that of Benaini-Robert [3J and has been obtained independently.

In this subsection, we have established the systolic complexity of the APP. We
believe that the design of space-time-minimal arrays represents an interest
ing and important contribution to the knowledge of the systolic model. This
contribution is twofold:

• From the theoretic point of view, we can prove optimality results that will
contribute to our basic understanding of the limits and potential of systolic
computation.

• From the practical point of view, we can compare any existing solution
against the one that minimizes both time and space. Therefore, if other
design criteria (including technical implementation constraints) are to be
taken into account, we have a good basis for performance evaluation.

5 EXTENDING SYNTHESIS METHODS

As mentioned in chapter 1, methods for synthesizing systolic arrays from uni
form recurrence equations (UREs) or uniform directed acyclic graphs (DAGs)
are well understood [12, 19, 26, 27, 29, 28J. The idea is to extract from the orig
inal sequential algorithm a dependence graph (DG), where all incoming arcs
to a given node come from a fixed-size neighborhood, so that dependencies are
local. Space-time transformations are then used for scheduling the DG (timing
function) and for mapping nodes onto physical processors (allocation function).

www.manaraa.com

56 CHAPTER 3

Both linear and piece-wise linear mappings can be derived in a systematic way,
and methods exist to optimize given criteria within a constraint on execution
time (for latency-limited applications), the period (for throughput-limited pro
cessing), or the number of processors (for area-bound applications).

We first briefly review the well-known basic synthesis method. Then we focus
upon extensions of this original method, such as more efficient scheduling and
bounded broadcast facilities, and also the embedding in a more complete system
design trajectory, which also requires, for instance, extraction of the uniform
DG and partitioning of the solution on a fixed size array. Where appropriate,
we will also refer to the methods described in the other chapters.

We will assume here that the (non-uniform) dependence graph of the APP has
already been extracted from the initial textual specification. In practice, this
step can be performed automatically from applicative languages in a relatively
simple way, as explained briefly in chapter 6; or from procedural nested loop
notations expressed in any standard programming language, with more complex
procedures, as discussed in chapters 4 and 5.

1 Scheduling the DG for the APP

Using the first formulation of the APP, we have the following system of equa
tions. Input equations:

1 ~ i ~ n, 1 ~ j ~ n => A(i, j, 0) = aij

Computation equations:

l~k~n

1 ~ k ~ n, 1 ~ i ~ n, i ;j:. k
1 ~ k ~ n, 1 ~ j ~ n, j ;j:. k
1 ~ k ~ n, 1 ~ i ~ n,
1 ~ j ~ n, i ;j:. k, j ;j:. k

Output equations:

=> A(k, k, k) = (A(i,j, k - 1))*
=> A(i, k, k) = A(i, k, k - 1) 0 A(k, k, k)
=> A(k,j, k) = A(k, k, k) 0 A(k,j, k - 1)

=> A(i,j, k) = A(i,j, k - l)EB
A(i, k, k)(x)A(k,j, k - 1)

1 ~ i ~ n,l ~j ~ n => aij = A(i,j,n)

The dependence graph corresponding to the APP algorithm contains opposite
dependence vectors: for instance, node (3,2,2) depends on node (2,2,2); hence
the dependence vector (1,0,0). But node (1,2,2) also depends upon node (2,2,2);
hence the dependence vector (-1,0,0). The existence of these two opposite

www.manaraa.com

Solving the algebraic path problem 57

vectors prevents us from using a linear timing function. The scheduling of
this formulation therefore requires complicated manipulations, such as domain
translation [29J (an automated synthesis technique, re-indexing, to perform this
function is described in chapter 6). However, using the second formulation of
the APP, where we have padded the matrix A with two copies of the identity

matrix: A := (t 10), and now operating on the new 2n x 2n matrix A,

we have the following system of equations. Input equations:

1 :::; i :::; n, 1 :::; j :::; n, k = 0
l:::;k:::;n
1 :::; k :::; n, k + 1 :::; j :::; n + k
l:::;k:::;n
1 :::; k :::; n, k + 1 :::; i :::; n + k - 1

=> A(i,j,k)=aij
=> A(n + k, k, k - 1) = 1
=> A(n+k,j,k-1)=O
=> A(k, n + k, k - 1) = 1
=> A(i, n + k, k - 1) = 0

=> A(k,k,k)=A(i,j,k-1)*
=> A(i, k, k) = A(i, k, k - 1)®

A(k,k,k)
=> A(k,j,k) = A(k,k,k)®

A(k,j, k - 1)
=> A(i,j,k) = A(i,j,k -1)$

A(i, k, k) ® A(k,j, k - 1)

1 :::; k :::; n, k + 1 :::; j :::; n + k

1 :::; k :::; n, k + 1 :::; i :::; n + k,
k+l:::;j:::;n+k

Output equations:

1:::; i :::; n, 1:::; j :::; n => aij = A(i + n,j + n, n)

Computation equations:

l:::;k:::;n
1 :::; k :::; n, k + 1 :::; i :::; n + k

The computation domain is Dn = {(i,j,k),l :::; k :::; n,k :::; i,j :::; n + k}.
The DG is represented in figure 2 for n = 4. Note that the longest path is
(1,1,1) ~ (2,1,1) ~ (2,2,1) ~ (2,2,2) ~ (3,2,2) ~ ... ~ (n,n,n) ~
(n + 1, n, n) ~ (n + 1, n + 1, n), for which the length is 3n.

The time to execute the operations in the DG is determined when we assign
both a timing function (schedule) and an allocation function (mapping) to the
nodes, subject to the following constraints:

• A node can be computed only when its predecessors (the nodes on which
it depends) have been computed at previous steps.

• No processor can compute two different nodes at the same time-step.

The minimal time to schedule the DG is clearly equal to the length of the
longest path; hence topt(n) = 3n. Note that achieving this bound would imply

www.manaraa.com

58

Figure 2 Non-uniform dependence graph for the APP.

CHAPTER 3

having enough processors and global communications: node (n, n, n) cannot be
computed before step 3n - 2; its value must be broadcast to n processors so as
to compute nodes (i, n, n), n + 1 ~ i ~ 2n at time 3n - 1; and finally the n2

nodes (i,j, n), n + 1 ~ i,j ~ 2n must be computed at time 3n. Also, note that
node (k, k, k) cannot be computed before step 3k - 2.

There are several algorithmic variations for expressing the DG. The DG of
figure 2 (or an equivalent form) is the most commonly used; we take it to be
fixed in the following. We point out that we deal with a generic form of the APP.
Several modifications can be made when dealing with specific instances. In the
Gauss-Jordan algorithm, for instance, we can replace the following equations:

ak ._ (ak - 1)* .
kk'- kk ,

for i := k + 1 to k + n do

ak . ak - 1 10>. ak .
ik .= ik '<Y kk'

by the following:

for i := k + 1 to k + n do
k k-l/ k-laik := aik akk ;

www.manaraa.com

Solving the algebraic path problem 59

Then, the minimal time to schedule the DG becomes 2n. For the transitive
closure or shortest path formulations, the closure operation * even disappears!

The DG of figure 2 is not yet uniform, as there are non-local dependences: node
(i,j, k) depends on node (i, k, k) and (k,j, k) for all i,j > k. An SIMD solution
would look as follows:

compute node (k, k, k); /* time step 3k - 2 */
for all i > k do in parallel 1* time step 3k - 1 */

broadcast a(k, k, k) to compute nodes (i, k, k);
for all i, j > k do in parallel /* time step 3k */

broadcast a(i,k,k) and a(k,j,k) to compute node (i,j,k);

Broadcasting a given data item to an arbitrary number of processors is reason
able in an SIMD environment, but it is not for VLSI implementations, where
a limited fan-out is required [10].

2 Systolic DG for the APP

The systolic answer to the problem is to localize the broadcasts in the DG
before scheduling and mapping its nodes [15], so as to synthesize an architecture
where all communications are made local. Such a derivation process is well
understood. Some recent synthesis results are discussed in chapter 6. The
natural idea is to replace the broadcast of a variable by its pipelined propagation
along the direction of the dependence vector. In this way, we obtain the DG of
figure 3.

Note that all dependences are local now. The set of dependence vectors is
e = {Oa,OI,Ou}, with Oa = (0,0,1),01 = (0,1,0), and Ou = (1,0,0). For the
sake of simplicity, we assume that each vertex of Dn has the same computation
time, although the operations are not the same in all the vertices. A schedule
(or timing function) is a mapping t : Dn ---. N such that if computation at
vertex x E Dn depends on those at vertex y E Dn, then t(x) > t(y). Given
t, the total execution time is T(n) = M ax(t(x); x E Dn). Usually we want
to determine a schedule t such that T(n) is minimal. We find here that node
(i, j, k) can be scheduled at time i + j + k - 2. This has also been proven to be
the unique time-optimal schedule [3].

To obtain systolic designs, there remains the task of choosing an allocation
function that maps nodes to physical processors while preserving the depen-

www.manaraa.com

60 CHAPTER 3

I. I.
I I II.
I . 1.1 I

~.! I.: I I !
III I II': ,.4tii7 I I J

Li~tH Xl/')f ;r 1/
/' ?' V I

/" I)'J

I/'
/ /)'

/'
/' V

V
j

/ / // /'
// / /'ff"L--;;/
LI/';,~

k

Figure 3 Uniform DC for the APP.

dences. The simplest solution is to take the allocation function alloc to be
linear, which ensures a good regularity and local interconnections in the final
architecture. More precisely, we take alloc to be an orthogonal projection along
a direction u, where u is a vector which is not orthogonal to isochronous hyper
planes. If we choose u =(0,1,0), we have alloc(i, i, k) =(i, 0, k), and we obtain
the Robert-Thystram [34], Kung-Lo-Lewis [23], and Lewis-Kung [22] solutions.
If we let u = (0,0,1), we obtain a solution where coefficients are updated in
place, which implies to include an additional time needed to load and unload
the array.

In collaboration with our IRISA partner, we have succeeded in applying the
dependence mapping strategy to retrieve the folded array of section 4 in a
systematic way [2]. Automated synthesis techniques that include extensions to
the basic linear scheduling and allocation techniques, and that can handle the
APP demonstrator, are also presented in chapters 4, 5, and 6. Moreover, if
several different processor elements with different modes have to be dealt with,
they need to be controlled by local controllers. For this purpose, control signals
have to be distributed, as discussed in chapter 4. One particular extension that
is very useful for decreasing the execution time even further is discussed in the
next subsection.

www.manaraa.com

Solving the algebraic path problem

3 Bounded broadcast facility

61

The question is the following: how can we decrease execution time even further?
From the problem specification, we know that node (k, k, k) must be computed
at (in fact, cannot be computed before) time 3k - 2. If we want to improve on
the bound 5n - 2, we have to compute several nodes (i, k, k), i > k in parallel,
and then to update several nodes (i,j,k), i,j > k in parallel.

In well-known systolic solutions listed in tables 1-3, the pivot coefficient a~k

(node (k, k, k) in the DG) is computed at time t(k, k, k) = 3k - 2 in cell (k, k).
Then it is systolically propagated from cell to cell so as to reach cell (i, k) at
time t(k, k, k) + i - k for computing a:k := a7k- 1 ® a~k (node (i, k, k) in the
DG). As already said, node (k, k, k) cannot be computed before step 3k - 2.
But we can use a bounded broadcast facility and propagate the pivot coefficient
a~k to the next b cells within one single time-step, where b is a parameter to
be adjusted. In other words, we still compute node (i, k, k) in cell (i, k), but
at time 3k - 2 + Li-"k J+ 1. Scheduling the whole DG is easy: node (i, j, k) is
computed at time 3k - 2+(L i-"k J+1) +(j - k) in cell (i, k). The total execution
time is thus 4n + ~ + 0(1). By a method similar to those of Benaini-Robert
[3] and Cappello-Scheiman [7], we can fold the array so as to use only the first

2r~1rows, thereby reducing the cell count down to ; + O(n) , at the price of
increasing the period up to 3n.

We would like to point out that the scope-b broadcast enables us to parametrize
the localization of the DG of figure 2. The parameter b can be viewed either
as the maximal length of the dependence vectors, or as the maximum number
of copies of a given variable (the fan-out of the array). Hence, the parameter
b can be adjusted to cope with current integration constraints. Further results
on the scope-b broadcast transformation are available elsewhere [31, 8, 30].

Another solution to improve the execution time is to compute several indices
(i, j, k) in parallel with i and k fixed. Let c be the number of j-indices such
that nodes (i,j,k) are computed simultaneously for i and k fixed. This leads
to an array with the same number of cells as in well-known solutions (namely
n2), but with a lower execution time (4n + 7), which comes at the price of an
increase in the period ec;2 n ::; 3n instead of n).

We now mix both transformations to speed up the computations along i and j
indices. We obtain an array of n2 cells with vertical wrap-around connections.
Index (i, j, k) is executed at time t(i, j, k) =3(k - 1) + 1+ r~l + ri-"kl + 1 in
cell (c(i - 1) + 1 + ((j - k) mod c), k mod c). The total execution time of the

www.manaraa.com

62 CHAPTER 3

I Period ITimeIApplication I Area I
b-broadcast [31J General APP n2 4n +n/b n
b-c-transformation [32J General APP n2 3n + n/b+ n/c n

I Reference

Table 4 APP arrays with limited broadcast facility.

array is T = 3n + r~l + r~l - 2, and the period is still equal to 3C;2 n. We
summarize our results in table 4 [30J.

In this section, we have introduced the scope-b broadcast transformation to
improve the performances of systolic arrays. The parameter b can be used
to parametrize the uniformization of a given DG by the programmer. The
parameter b can be viewed either as the maximal length of the dependence
vectors or as the maximum number of copies of a given variable (the fan-out
of the array). Therefore, the parameter b can be adjusted to cope with current
integration constraints. We have shown how to improve existing solutions using
limited broadcast facilities. In the particular case b =c =2, we have proposed
an array with a connectivity equivalent to that of a 2-D torus, but with an
execution time of only 4n, a 20% improvement over the best previously known
solution. The design methodology can also be extended to cope with limited
broadcast facilities [30].

6 PARTITIONING ISSUES

Recent work has shown that the synthesis method described in section 5 (based
on a projection vector and a scheduling vector) can be extended to generate
systolic implementations on a fixed number of processors. The main idea of
all these extensions is to merge many cells into a single processor so as to
compress the array. This step is called partitioning and can take two different
forms: the LPGS (locally parallel globally sequential) form and the LSGP
(locally sequential globally parallel) form (see also chapter 4).

The first approach, studied by Moldovan [27J, is to partition the array into
blocks whose size is the number of available processors, say p, and to compute
each block, one after the other. The different points of computation in the
current block are allocated and scheduled in the p processors, in accordance to
the dependence constraints. This method requires small local memories, but a
large external buffer is needed to store the data used by the next block.

www.manaraa.com

Solving the algebraic path problem 63

The second approach, independently studied by several researchers [5, 12, 11]'
is totally different. A virtual array is obtained by the usual method, and it is
then partitioned into p blocks of virtual processors, each block being allocated
to one physical processor. Of course, the different points allocated to the same
processor have to be computed at different times in the array in such a way
that they can be sequentially executed by the physical processor. This method
permits synthesizing systolic arrays with a fixed number of cells and, as a
particular case, permits improving the efficiency of the cells in a systolic array
obtained by the usual projection method. It is described in chapter 4. This
method is largely oriented towards applications where the period or throughput
is important.

In this section, we present one such method [12, 11]' using the APP as a test
vehicle. The main qualities of this approach are threefold:

• It is oriented towards minimization of execution time for a given number
of processors.

• It preserves the inherent regularity of the dependence graph by allowing a
regular paving of the array with rectangles.

• It reduces the number of communications in the final array, by merging
neighboring cells. Neighbor here means that there are communications
from one cell to the other.

1 Projection method and compression

As already stated, the allocation and timing functions in the usual synthesis
method are chosen linear. The uniform domain of computation is projected
along a projection vector onto an hyperplane, and this allocation plus the timing
function describe the array. If we look at the resulting array more precisely, we
can remark that the points projected along the projection vector onto the same
cell are evaluated periodically, say with a period of c time units. This gives
the intuition that c cells could be merged in a same physical processor. This
should allow both an increase of the activity of the cells, and a compression of
an array: indeed, we just have to slow down the algorithm, Le., to increase c,
and then we can compress the array by a factor c.

www.manaraa.com

64 CHAPTER 3

A priori, we could merge any c cells in a same physical processor if they never are
active at the same time. However, the best way seems to cluster cells belonging
to parallelepipeds whose edges are parallel to the projection of dependence
vectors, and this for at least three reasons:

• In general, the array obtained after projection is a regular array with
boundaries parallel to certain dependence vectors. Thus, a paving with
such parallelepipeds will give a good paving, i.e., will require the smallest
number of processors.

• Using boxes with edges parallel to the projection of dependence vectors as
a pattern for the partitioning will reduce the number of external commu
nications.

• Merging neighboring cells is better if we want to pipeline many problems on
the same array. Indeed, the delay between two problems would be longer
if we merge into the same physical processor a cell active at the beginning
together with a cell active much later, i.e., available for a second execution
later, too.

To describe all the properties of the resulting array in a precise framework,
several mathematical concepts must be introduced. They allow for selection of
the parallelepipeds that are suitable for a good partitioning. The complete de
scription of the techniques for projection and compression is available elsewhere
[11, 12, 13J.

2 The example of the APP

We will illustrate the entire method on the example of the APP. The initial
dependence graph and the computation domain after space-time mapping have
been presented in section 5. Assuming that we want a compression factor c = 3,
the vector projection sis chosen in the plane (i,J) such that the input data are
projected onto a line which will become one of the boundaries of the array. To

obtain tbe minimal 'unace 1m the anay, we choose it~ (!). We complete

it into a unimodni~ matrix S it = (n~ 0~ ~)(nthus S =

www.manaraa.com

Solving the algebraic path problem

1.001.00.
00.00.0
0.00.00
.00.00.
00.00.0

~
oo.oo.

00.00.0
0.00.00
.00.00.
00.00.0

65

___ ~ activity vectors (-3,0) and (1,1)

Figure 4 Two feasible regular partitions. • denotes an active cell, 0

an inactive one.

5-1 = (~ ~ ~). Then we choose a timing function f such that (f; S) =c
001

and we complete the vector into another unimodular matrix T-1. Here the best

scheduling vecw, lli T = 0) We find 0) O! no),
so T- 1 = (~ ~ ~) and T = (~ ~3 ~1). The different possible

o 0 1 0 0 1
tilings are indicated by the different Hermite forms of the last (n - 1) x (n - 1)

submatrix of S-lT. Here, the product S-lT is equal to (~ !3 ~1)'
001

which shows that, in the resulting array, (~3) and (~1
) form a basis

of the lattice of the cells active at the same time. The two Hermite forms of

A = (~3 ~1
) are (~ ~) and (~ ~), which leads to two different

tilings (see figure 4): a tiling with boxes 3 x 1 and a tiling with boxes 1 x 3.

Anothe, possibility lli to use the pwjection vecto, if = (:). We have S =

(~ ~ ~), and 5-1 = (~ ~ !1). To get c = 3, we take f = (~),
1 0 0 0 1 -1 1

hence T- 1 = (~ ~ ~), and T = (~ ~1 ~1). The resulting array
o 0 1 0 0 1

has n 2 /3 + O(n) cells, an execution time equal to 5n - 2, and a period equal
to 3n. It is, therefore, a new solution for a space-time-minimal array.

www.manaraa.com

66 CHAPTER 3

7 CONCLUSION

In this chapter, we have surveyed recent developments of systolic algorithms
and synthesis methods, working out the example of the APP. We have shown
how algorithmicians have developed increasingly powerful (but also increasingly
complex) solutions. We have also shown how synthesis methods have been suc
cessfully extended to cope with these algorithmic/architectural improvements,
especially in the field of DG uniformization (by re-indexing and localization),
scheduling/allocation techniques for space-time-minimal arrays, and partition
ing techniques for the efficient mapping of a computational DG onto a fixed-size
processor array.

Many of the new solutions and methods reported here have been derived within
the scope of NANA, owing to the cross-fertilization between partners of comple
mentary expertise. Chapters 4, 5 and 6 introduce several novel and practically
oriented array synthesis approaches that have been stimulated by our experi
ence with the APP and other demonstrators.

REFERENCES

[1] H. M. Ahmed, J. M. Delosme, and M. Morf. Highly concurrent computing
structures for matrix arithmetic and signal processing. Computer, 15,
number 1, pages 65-82, 1982.

[2] A. Benaini, P. Quinton, Y. Robert, B. Tourancheau, and Y. Saouter. Syn
thesis of a new systolic architecture for the algebraic path problem. Science
of Computer Programming, 15, number 2-3, pages 135-158, 1990.

[3] A. Benaini and Y. Robert. Space-time-minimal systolic arrays for gaussian
elimination and the algebraic path problem. Parallel Computing, 15, pages
211-225, 1990.

[4] A. Benaini, Y. Robert, B. Tourancheau. A new systolic architecture for
the algebraic path problem. In J. McCanny et al., editors, Systolic array
processors, pages 73-82. Prentice Hall, 1989.

[5] J. Bu, P. Dewilde, and E. F. Deprettere. A design methodology for fixed
size systolic arrays. In S. Y. Kung et al., editors, Application specific array
processors, pages 591-602. IEEE Computer Society Press, 1991.

[6] P. R. Cappello. A space-time-minimal systolic array for matrix product.
In J. McCanny et al., editors, Systolic array processors, pages 347-356.
Prentice Hall, 1989.

www.manaraa.com

Solving the algebraic path problem 67

[7J P. R Cappello and C. J. Scheiman. A processor-time minimal systolic array
for transitive closure. In S. Y. Kung et al., editors, Application specific
array processors, pages 19-30. IEEE Computer Society Press, 1990.

[8J P. Cappello and Y. Yaacoby. Bounded broadcast in systolic arrays. Tech
nical Report TRCS88-13, Department of Computer Science, University of
California, Santa Barbara, 1988.

[9J Y. H. Cheng and K. Hwang. Partitioned matrix algorithm for VLSI arith
metic systems. IEEE Trans. on Computers, C-31, pages 1215-1224, Mar
1982.

[10J L. A. Conway and C. A. Mead. Introduction to VLSI systems. Addison
Wesley, 1980.

[11J A. Darte. Regular partitioning for synthesizing fixed-size systolic arrays.
Integration, the VLSI Journal, 12, number 3, pages 293-304, 1991.

[12J A. Darte and J. M. Delosme. Partitioning for array processors. Techni
cal Report 90-23, LIP-IMAG, Ecole Normale Superieure de Lyon, France,
1991.

[13] A. Darte, T. Risset, and Y. Robert. Synthesizing systolic arrays: some
recent developments. In M. Valero et al., editors, Application specific array
processors, pages 372-386. IEEE Computer Society Press, 1991.

[14J J. M. Delosme. A parallel algorithm for the algebraic path problem. In
M. Cosnard et al., editors, Parallel and Distributed Algorithms, pages 67
78. North Holland, 1989.

[15J V. Van Dongen and P. Quinton. Uniformization of linear recurrence
equations: a step towards the automatic synthesis of systolic arrays. In
K. Bromley et al., editors, International Conference on Systolic Arrays,
pages 473-482. IEEE Computer Society Press, 1988.

[16J R. Dorairaj and G. Lakhani. A VLSI implementation of all-pair short
est path problem. In ICPP 87 pages 207-209. S. K. Sahni, editor, The
Pennsylvania State University Press, 1987.

[17J L. J. Guibas, H. T. Kung, and C. D. Thompson. Direct VLSI implemen
tation of combinatorial algorithms. In Caltech Conference on VLSI, pages
509-525, 1979.

[18) S. Hansen and J. G. Nash. Modified Faddeev algorithm for matrix manip
ulation. In Real-time Signal Processing VII, pages 39-46. Society of Photo
Optical Instrumentation Engineers, 1984.

www.manaraa.com

68 CHAPTER 3

[19] S. Y. Kung. VLSI array processors. Prentice Hall, 1988.

[20] H. T. Kung and M. S. Lam. Fault-tolerance and two-level pipelining in vlsi
systolic arrays. Journal of Parallel and Distributed Computing, 1, pages
32-63, 1984.

[21] H. T. Kung and C. E. Leiserson. Systolic arrays for VLSI. In C. A. Mead
and 1. A. Conway, Introduction to VLSI systems, chapter 8.3. Addison
Wesley, 1980.

[22] S. Y. Kung and P. S. Lewis. An optimal systolic array for the algebraic
path problem. IEEE Trans. on Computers, C-40, pages 100-105, 1991.

[23] S. Y. Kung, P. S. Lewis, and S. C. Lo. Optimal systolic design for the
transitive closure and shortest path problems. IEEE Trans. on Computers,
C-36, number 5, pages 603-614, 1987.

[24] S. Y. Kung and S. C. Lo. A spiral systolic architecture/algorithm for
transitive closure problems. Proc. IEEE Int. Conf. on Computer Design,
Port Chester NY, pages 622-626, Oct 1985.

[25] M. R. Kramer and J. Van Leeuwen. Systolic computation and VLSI.
Foundations of Computer Science IV, 36, pages 75-103, 1983.

[26] T. Lang and J. H. Moreno. Matrix computations on systolic-type meshes:
an introduction to the multi-mesh graph. Computer, 24, number 4, pages
32-51, 1990.

[27] D. I. Moldovan. Mapping an arbitrarily large QR algorithm into fixed size
systolic arrays. IEEE Trans. on Computers, C-35, number 1, pages 1-12,
1986.

[28] P. Quinton. Mapping recurrences on parallel architectures. In L. P. Kar
tashev and S. I. Kartashev, editors, Supercomputing ICS 88, pages 39-46.
International Supercomputing Institute, 1988.

[29] P. Quinton and Y. Robert. Algorithmes et Architectures Systoliques. Mas
son, 1989.

[30] T. Risset. Linear systolic arrays for matrix multiplication: comparisons of
existing methods and new results. In Proc. 2nd Workshop on Algorithms
and VLSI parallel architecture, pages 163-174, 1991.

[31] T. Risset and Y. Robert. Uniform but non-local DAGs: a trade-off between
pure systolic and SIMD solutions. In Application Specific Array Processors
91, pages 296-308. IEEE Computer Society Press, 1991.

www.manaraa.com

Solving the algebraic path problem 69

[32] T. Risset and Y. Robert. Synthesis of processor arrays for the algebraic
path problem: unifying old results and deriving new architectures. Parallel
Processing Letters, 1, pages 19-28, 1991.

[33] Y. Robert and M. Tchuente. Resolution systolique de systemes lineaires
denses. RAIRO Modelisation et Analyse Numerique, 19, pages 315-326,
1985.

[34] Y. Robert and D. Trystram. Systolic solution of the algebraic path prob
lem. In W. Moore, A. McCabe, and R. Urquhart, editors, Systolic Arrays,
pages 171-180. Adam Hilger, Bristol, 1987.

[35] G. Rote. A systolic array algorithm for the algebraic path problem (short
est paths; matrix inversion). Computing, 34, pages 191-219, 1985.

[36] J. D. Ullman. Computational aspects of VLSI. Computer Science Press,
1984.

www.manaraa.com

4
HIFI: FROM PARALLEL

ALGORITHM TO FIXED-SIZE
VLSI PROCESSOR ARRAY

Peter Held, Patrick Dewilde
Ed Deprettere, Paul Wielage

Delft University of Technology

ABSTRACT

HIFI is a comprehensive design system for massively parallel computing hard
ware. It covers the design path from behavioral and algorithmic specification
to the definition of an architecture or even an electronic circuit. Conversely,
it allows for interactive construction of structural objects that represent com
putations, their simulation and verification. In principle, HIFI can handle any
algorithmic specification, regular, irregular, or partially regular, and it can gen
erate any type of architecture. However, its design functions and the embedded
synthesis techniques are geared towards exploitation of regularity to a maximal
extent.

1 INTRODUCTION

The main problem in designing high speed, massively parallel, electronic hard
ware is the exploitation of the properties of the selected algorithm to maximal
electronic benefit. In the course of the design trajectory, these properties may
get lost because the existing mathematical structure drowns in architectural
considerations. With HIFI, we have attempted to build a system in which the
connection between algebraic and structural properties remain present at each
level of refinement. The RIFI design trajectory will not "flatten out" the algo
rithm, but deals with regular parts in an algebraic fashion. Another key feature
of RIFI is parametrization. Design steps are mathematical mapping operations
that in principle are independent of the parameter instances.

71

www.manaraa.com

72 CHAPTER 4

It is a remarkable fact that it is indeed possible to build a design system with
such properties! Around 1983-85, the development of the HIFI system was
based on the work of Sailesh Rao [23] and S. Y. Kung [18]. The first version of
HIFI was built around 1985 [17] and implemented Rao's and Kung's ideas, using
a powerful new data model (the HIFI model, which will be presented briefly in
this chapter) and object oriented programming. This early system did not, how
ever, address the main problem: how to map large algorithms of arbitrary size,
to an architecture of given, fixed size. The breakthrough in solving this prob
lem was obtained in the late 1980s more or less simultaneously by Bu [3] and
Thiele [26]. In that period, two central problems were solved: the generation
of dependence graphs that are as regular as possible from a loop specification,
and the tiling, clustering, and partitioning of regular graphs to a regular archi
tecture. The main point was to keep the operations truly geometric, so that
they are not dependent on any particular indexing scheme, but exclusively ex
ploit the geometric (i.e., index-independent) properties of the algorithm. From
1989, our efforts have been directed to extending these schemes from regular
algorithms to piece-wise regular algorithms, i.e., algorithms consisting of reg
ular pieces with regular interconnects between them. It goes without saying
that any algorithm is trivially a piecewise regular algorithm, although this is
mainly of theoretical concern due to practical complexity problems. The point
is, however, that large regular pieces get special, parametrized treatment. These
problems were all solved in principle around 1990, and their solutions are now
implemented in HIFI as design functions.

A design system will distinguish itself by the way it handles the key concepts hi
erarchy and abstraction. HIFI utilizes a generalized signal flow graph (SFG) as
unifying object, on which it then superimposes the necessary geometric struc
tures (piecewise regularity, parametrization, ...). A special case of SFG is the
dependence graph (DG), which is a faithful, architecture-independent represen
tation of an algorithmic specification. The actual architecture is itself repre
sented as a generalized SFG. The main problem that we faced when designing
HIFI was how to represent hierarchies of piecewise regular SFGs, including hi
erarchies of interfaces. We believe that we have solved this difficult problem
in a satisfactory, index-independent, geometric way. Other researchers have
developed similar approaches [24].

In the remainder of the chapter we will make a semi-formal tour of HIFI.
We will first introduce the general design philosophy in section 2. Next, the
algorithm specification model is introduced, and a realistic demonstrator from
document processing is presented at this level (section 3). The most important
architecture-level elements of the design model are discussed in section 4. This

www.manaraa.com

The HiFi system

Behavior

extraction

hardware specification

Algorithm Architecture

generalized signal flow graphs
structure of hardware behaviors

73

Figure 1 The three kinds of design descriptions.

is then followed by the main synthesis-related design functions, i.e., flow-graph
extraction, space-time transformation, and partitioning-clustering in sections 5
and 6.

2 DESIGN PHILOSOPHY

The HIFI system allows the designer to move interactively from one level of
specification to another, either in a top-down or in a bottom-up manner. The
top-down direction typically starts out from a behavioral specification of the
problem (described in chapter 2) and refines it to a structure of lower level
behaviors according to a chosen algorithm.

As shown in figure 1, HIFI contains representations for objects of the type
behavior, algorithm, and architecture. The last category will typically be repre
sented by a generalized kind of signal flow graphs (SFGs). For the algorithmic
level, we will have objects like nested loop programs, single assignment forms,
and dependence graphs. Behavioral descriptions are typically given from out
side the system: at the top level as specification of the problem, at the bottom
level as specification of hardware to be used. The task of the design trajectory

www.manaraa.com

74 CHAPTER 4

is to transform the specified behavior (which is assumed to be given here) into
a complete architecture of hardware specifications. Thus, we have to start with
the search for an algorithm that implements the behavior and is suitable for
realization in hardware.

3 ALGORITHMIC SPECIFICATION

We can describe an algorithm as "some composition of primitive nodes with a
functional behavior which can serve as a realization of the given more complex
behavior." This part of the trajectory requires the most inspiration from the
designer, since it cannot be formalized and the choices greatly influence the final
performance of the resulting hardware. Aspects of the algorithm that must be
taken into account here are: parallelism, regularity, numerical stability, and
simplicity of its constituting primitive nodes [14]. We detail the algorithm to
such an extent that it consists of a composition of primitive nodes, which have
a known implementation in the hardware domain.

Typically, an algorithm will be specified in the form of a nested loop program
(NLP) [3]. It is useful to include the specification of a nested loop program
as an integral part of the design trajectory, mainly because it can be specified
in an easily comprehensible syntax and because such a program often can be
found in a library.

Unfortunately, an NLP does not explicitly show the parallelism of the com
putations. Therefore, the first step in the design trajectory is to convert the
NLP into a dependence graph (see chapter 2) [4]. The resulting DG will have
a node for each instance of the calculation of a function, e.g., Floyd in the ex
ample below. Its edges will represent the passing of arguments between those
functional nodes and hence implement "function calls." We will discuss the
conversion step in more detail in section 5. Similar functionality is provided in
the approach of chapter 5 but for a partly different target domain.

The demonstrator that will be used throughout this chapter is the Floyd
Steinberg algorithm for the half-toning of documents. The problem to be solved
is the conversion of an image of n-bit pixels to an image of I-bit pixels while
retaining as much of the image quality as possible [21]. Such an algorithm is
needed, for instance, when one wants to print a photograph on white paper
using only black ink. When an n-bit pixel is converted into a I-bit pixel, e.g.,
through thresholding, an error is made. In the Floyd-Steinberg algorithm, this

www.manaraa.com

The HiFi system

for j = 1 to N
for i = 1 to M

z(j, i)
ea(j, i)
eb(j, i)
ee(j, i)
ed(j, i)

end

end

g(j, i)
ea(j, i-I)

=Flayd eb(j - 1, i-I)
ee(j - 1, i)

ed(j - 1, i + 1)

Figure 2 The nested loop program in pseudo-MATLAB code for the
Floyd-Steinberg algorithm.

function (z, ea, eb, ee, ed 1= Floyd(g, ea, eb, ee, ed)
begin

E = (7 Ha + 1 * eb + 5 * ee + 3 Hd)/16;

v = g+E; / / v is the "corrected" pixel value.

/ / T(hreshold) = 128. w is the value of v, rounded to 0 or 255.

if v < T then w =O;z = 0; else w = 255; z = 1;

e = v-w;

ea = eb = ee = ed = e;

end

Figure 2 (continued) Floyd-Steinberg algorithm.

error is propagated to the not yet converted pixels in the image neighborhood
and is used there to compensate for the error previously made. The simplified
NLP of the algorithm for an image of M x N 8-bit pixels is shown in figure 2,
where g(j, i) is the input and z(j, i) is the output. The algorithm can be tuned
by changing the weights of the propagated errors or by changing the threshold
value in the function Floyd.

www.manaraa.com

76 CHAPTER 4

Input Output

o. •• 0
I. ... 1

{J
2. •• 2
3. ... 3

In out 4. ... 0
5. ... I
6. ... 2
7. ... 3
8. •• 0

Figure 3 The moduIo-4 node with its behavior defined as an input
output mapping between its input data and expected output data.

4 ARCHITECTURE MODEL

However complex an algorithm may be, it ultimately has to be executed by a
collection of primitive hardware units, which HIFI considers to be finite state
machines. We model a finite state machine by an AST node. This architectural
model was inspired by the concept of applicative state transitions (ASTs) as
published by Backus [2], and, in acknowledgement of that fact, we have named
our node accordingly.

The capabilities of a primitive hardware unit are specified by a number of
behavior descriptions corresponding to each of its states. The behavior can
change from state to state (e.g., an ALU may in one state execute a logic
function and in another an arithmetic operation). Therefore, we say that an
AST node has a temporal behavior.

HIFllooks upon each part of a hardware unit that carries out a specific behavior
as a black box with a number of input and output ports. Its behavior is defined
by a relation between the data supplied at its input ports and the expected data
at its output ports. If we do this for all possible input values, the behavior, as
it reveals itself to the outside world, is completely specified without restricting
the eventual realization. For instance, we can specify a modulo-4 operator
by writing down all the combinations of input-output data. Suppose that the
possible input values are the numbers 0 to 8. Then its behavior is defined by
the input-output table included in figure 3.

www.manaraa.com

The HiFi system 77

In many cases, an explicit specification of the behavior in the form of an input
output table is infeasible. HIFI allows an implicit specification by means of
a function description, whose structure, however, need not be relevant to the
ultimate architecture. This is, for instance, the case for the function Floyd in
the algorithm introduced in section 3.

The second type of node in HIFI expresses parallelism and is called a structure
node. It is a network of nodes, of either type, in which ports of nodes are
connected by edges. The nodes in such a network are concurrent processes
that are only aware of their local state and communicate asynchronously with
each other by edges. The communication between the AST nodes of such a
network is according the model of communicating sequential processes (CSP)
[15]. In the context of CSP, communication is seen as a shared event between
two subprocesses. This means that the production of data in one AST process
is synchronized with the consumption of data in another AST.

5 DESIGN TRAJECTORY

We can now think of two extreme conceptual architectures to execute an algo
rithm specified by a DG. At one end, we have an architecture consisting of a
structure node that has been obtained by direct mapping of each node of the
DG onto an AST node and of each dependency of the DG onto an edge. This
corresponds to parallel execution of the algorithm. In HIFI, a design is actually
entered as such an architecture. This is feasible because we focus on regular
architectures that can be described in a reduced way, as shown below. At the
other end, we find an architecture consisting of a single AST node that has a
state for each node of the DG where it executes the appropriate function. This
corresponds to sequential execution of the algorithm. This last architecture is
very costly in number of time steps needed for execution of the algorithm, while
the first one is expensive in the amount of hardware (space). The goal of the
HIFI design trajectory (see figure 4) is to allow the designer to weigh the costs
of various choices. The designer can continuously make a tradeoff between the
time, space, and memory needed by the array processor. The processor array
will be designed in such a way that its size is independent of the "size" of
the algorithm, the processors are optimally used, and its throughput rate is
balanced with the I/O speed of the host processor.

www.manaraa.com

78 CHAPTER 4

space-time transformation

regularization

partitioning

array synthesis

DO node

----------!-------
transformed

DO node

----------!-------
regularized

DO node

----------!-------
partitioned. hierarchical

DO node

----------!-------
fixed-size array

SPO I structure node

Figure 4 Overview of the HIF! design trajectory for regular processor
arrays.

1 Regular DG node

Since we focus here on a regular design, the structure node has special con
structs for exploring regularity. This is achieved by arranging the network
elements in a number of sets of indexed elements [11, 20].

Definition 4.1 Let L be an n x m integer matrix and 0 be a vector in zn,
where Z denotes the set of integral numbers. A lattice l(L,O) is a set of
regularly spaced integral points I E zn characterized by the relation:

I E l ¢} 3K E zm : I = L . K + 0

Definition 4.2 Let l be a lattice. A domain, D, is a set of integral points I
of the lattice l enclosed by a polytope. Let A be an r x n integer matrix and C
be a constant vector in zr. Then a domain is characterized by:

IED<;:>IEI:A·I5:C

www.manaraa.com

The HiFi system

0 0 0

0 0 0 0 0 0 0
i<=M

0 0······£;]·······0·······0·······0·······£;]·· ···0 0
· .· .· .

0 0 0 0 0 0 0 0
j >= I :j<=N

0 0 0 0 0 0 0 0

· .· .
0···· ..$·······0.... ···0.. ··· ..0 .. ·····$.. ··· 0

: i>= I
(0,0) .
0000000

79

o Index Point

o Node

L
Figure 5 The node domain of the Floyd-Steinberg algorithm, for N =
5 and M = 4. The dotted lines are the half planes, which are derived
from the bounds of the FOR-loop statements.

We now consider a structure node in which the set of nodes is partitioned in a
number of subsets. Nodes in a subset have identical behavior. These subsets are
called node domains. Let D be a domain and N be a type of node. Then a node
domain VN D is characterized by the pair (N, D) and consists of an indexed set of
nodes VN D = {NIl lED}. The node domain of the Floyd-Steinberg algorithm
is given in figure 5. The boundary planes of the domain are derived from the
upper and lower bound expressions of the FOR-loop statements of its nested
loop program.

In a similar way, we define a so-called port domain as a set of indexed ports,
denoted by (p, D) with P an input or output port of a node. There are four
types of port domains: input and output port domains are used to define the
interface of a structure node; destination and origin port domains are used to
define the edges of a regular node by means of dependence relations.

Definition 4.3 Let (Pin,!in) be an element of a destination port domain (Pin,
Din) and let (Pout,!out) be an element of an origin port domain (PouhDout).
A dependence relation defines a set of edges E' by a function F from the
destination port domain to the origin port domain, as follows:

(Pin,Pout) E E' {:} Vlin E Din3lout E D out : lout = F(Iin)

www.manaraa.com

80 CHAPTER 4

We require the function F to be affine. Let A be an m x n integer matrix and
let C be a constant vector in zn. Then F will be of the form:

In our demonstrator, the functions of the dependence relations are constant:
Fea = (0, _l)t, Feb = (-1, -l)t, Fee = (-1, O)t and Fed = (-1, l)t (see figure 8
for an example).

A structure node is called a regular node, if its set of nodes is completely defined
by a collection of node domains and its set of edges is completely defined
by a collection of dependence relations. We now define a dependence graph
node, denoted DC node, as an acyclic regular node with the property that each
element executes exactly once. It represents an architecture that has a one-to
one correspondence with the algorithmic specification given in the form of a
dependence graph (DG). More specifically, a DG node is a structure node with
characteristic properties overloaded from the DG. This means that each of its
AST nodes is fired exactly once and that each edge carries exactly one data
token.

2 Flow dependence extraction

We will now provide the procedure for converting a nested loop program (NLP)
into a DG node by extracting the flow dependencies between the operations
(iterations) of the NLP. In general, this is a very difficult problem and the
procedure we are going to explain will only work for so-called static and linear
NLPs. More specifically, the NLP may only contain statements that are of the
following type:

• FOR-statements, in which the upper and lower bound expressions are affine
functions on the loop iterators.

• IF-THEN-ELSE constructs, in which the condition is an affine expression.

• function-call statements, in which a function is called with a number of
right-hand-side variables as arguments and in which the result is assigned
to a number of left-hand-side variables.

FUrthermore, let I be an index vector containing loop iterators and let f(I)
be an affine function on I. Then all variables of the program are of the form

www.manaraa.com

The HiFi system 81

for i = 1 to N
for j = i + 1 to N

for k =ito M
if k :=: i then

[A(i, k), AU, k),phi(i, j)] = Fvectorize(A(i, k), AU, k));
else

[A(i, k), AU, k)] = Frotate(A(i, k), A(j, k),phi(i, j));
end

end
end

end

Figure 6 The MATLAB code for the QR factorization that can be
extracted.

v(f(1)), with V the name of the variable. The function f(1) is called the index
ing function of the variable. Figure 6 shows the QR factorization algorithm as
an example of a correct NLP.

The first step in the extraction process is to parse the MATLAB code and to
convert it into a number of node domains. We create a node domain for every
function-call statement separately. Its domain, the context of the function call,
is derived from the expressions of the active loop and conditional statements.
The index vector of a node domain is formed by the iterators of the active
FOR-statements. For example, Floyd-Steinberg has one node domain, whereas
the QR algorithm has two node domains.

Next, we have to find the flow dependence relations that may exist between
the functions (nodes). A function is flow dependent on another function if and
only if it is called with an argument value that has been produced earlier by the
other function. If no such function exists, the data are considered to be input
data of the program. We will simplify the explanation by considering only flow
dependencies between iterations (they could exist within iterations as well).

To solve the problem [3, 12], we can, fortunately, apply a divide-and-conquer
strategy. First we assume that variables with different names can never ref
erence the same data. For instance, the variable ea(j, i) and ec(j - 1, i) of
Floyd can never cause flow dependence relations because they have different
names. So, we sort the variables by name into sets of variables with equal
names. Next, we divide each such set in a set of result variables and a set of

www.manaraa.com

82 CHAPTER 4

argument variables. The value referenced by an argument variable can only be
defined by an assignment via one of its corresponding result variables. Now we
first search for dependence relations between the argument variable and each
of its result variables separately. After we have found the solution for each such
argument-result pair, we combine them to obtain the final result.

Each variable has its own context given by the node domain of its corresponding
function-call statement. Let ! and 9 be indexing functions. Let the argument
variable be v(J(Iarg))-for instance, the variable ec(j -1,i)-and let one of its
result variables be v(g(Ires))-for instance, ec(j, i). The argument variable is
referencing an element of v via its indexing function. The crucial question to
be answered is the following: which iteration Ires has assigned a value to this
element by writing to the result variable?

Let ~ denote the lexicographical ordering operator. We can formulate three
conditions that the iteration vector Ires must satisfy:

• g(Ires) = !(Iarg), the indexing functions of both variables must reference
the same element of the variable.

• Ires ~ Iargl the assignment to the element at iteration Ires must precede
its reading.

• The iteration Ires must be the lexicographically largest of the set of itera
tions that satisfy the first two given conditions.

It turns out that these constraints can be formulated as a parametrized linear
programming problem [10], in which the feasible set is formed by the context
of the result variable and in which the cost function is defined by the lexico
graphical ordering of the iterations. This latter fact is the key to the solution.
Not only are we allowed to define such a non-linear cost function, but it is also
smoothly integrated in the wayan LP algorithm works. The LP algorithm we
are using is called PIP [9].

Note that the indices of Iarg enter as parameters into the LP problem. To make
this clear1 we have depicted the node domain of the Floyd-Steinberg algorithm
once more in figure 7. It is divided into two port domains denoted by A and
B. The point is that the solution depends on the position of index vector larg.
If it lies in port domain A, its dependence relation is just the constant vector:
Fee = (-1, 0) t. If it lies in port domain B (on the edge) 1 no solution exists.
Generally, the solution returned by PIP is a list of pairs consisting of a port

www.manaraa.com

The HiFi system 83

(0,0)
L

o Floyd node

• destination port

o input port

• origin port

o output port

A

c

I
I I I I
I I I I

oD·....-·D·_·D·_·D·~·Dol
I I I
I I I
I I I
I 1 I

oD·....-·D·-·D·_·D·~·Dol
I 1 I
I I I
I I I
I I 1

oD·....-·D·_·D·_·O·~·Dc,
I I I
1 I I
I I I
I I I

oD·....-·D·_·D·_·D·~·DOI
I I I
I I I
I I I
I I I

B

r--ll

'-- -'1 L-J

o

Figure 7 The port domains found by PIP for the argument-result pair
of variable ec of the Floyd-Steinberg algorithm. It has found one depen
dence relation. Its function is constant and given by Fee = (-1, O)t, its
destination domain is A, and its origin domain is C. B is an input port
domain and D is an output port domain.

domain and the function of the dependency found for that domain. In case the
function is undefined, the port domain is an input port domain. In all other
cases, the domains are destination port domains. Note that the dependence
relations are of the form as defined in the section 5. This means that the
unknown iteration vector Ires is expressed exactly in terms of the known vector
I arg , which is just what we are searching for.

After solving the PIP problem for each argument-result pair, we have to com
bine these results. This is a relatively easy step. It consists of finding the
lexicographically largest index vector of the set of found index vectors Ires

[10]. The final result is still expressed in terms of dependence relations. The
extracted DG for the Floyd-Steinberg algorithm is given in figure 8. Finally,
table 1 lists the CPU time needed by the extraction tool to find the flow de
pendencies for the Floyd-Steinberg, the QR, and an FIR filter algorithm. It
also shows the number of node domains, port domains, and dependencies of
the extracted DGs.

www.manaraa.com

84

I Algorithm

CHAPTER 4

I CPU time I # node dam. I # port dam. I # depend. I
Floyd-Steinberg 10.0h 1 26 5
QR-factorization 44.4h 2 32 9
FIR-filter 5.7h 1 5 3

Table 1 CPU times for flow dependency extraction.

000 oOOd~OOO 000 000

00---·0-~·0~·0---·00
o - - ~-e:SJI - - .j_~- • - •• _ .•• 0

'f A Jec~ 'f X + X t0•• •~. ••• ••• ..0
00---.0---.0---.0---.0 0o • _ • _ _ • _ _ • _ _ _ _ 0

tX+XtxtXto • • • • • • • • • • • • • 0

00---.0---.0---.0---.0 00__ _ _ _ _ _ _ _ • _ _ _ 0

o 1.X . t.X. t .X. !.x. to
t ~~---·O---·O---·D---.DoCo 000 000 000 000

o Floyd node

• destination port

o input port

• origin port

o output port

Figure 8 The DG extracted from the Floyd-Steinberg algorithm. The
dependencies d_ea, d_eb, d-ec, and d_ed denote the error propagation.

www.manaraa.com

The HiFi system 85

p----------"""~,~~-,~~~,-,----------------------------------

~ "",~, """

"""~~~~""',
- --- ----_. --------- --- -------------- -- _.~. (] --(]- (]- (]-(] ",- --- -------

t. __•

I 2 3 4 5 6 .

Figure 9 Transformed dependence graph of the Floyd-Steinberg algo
rithm, given that A= [3,4)t and P = [0, I)t.

3 Space-time transformation

In general, the extracted DG is not necessarily uniform. In order to remedy
this situation, several techniques are discussed in chapters 3 and 6. This leads
to uniform recurrence equations or DREs. The next design step is a linear
space-time transformation [18, 16, 3]. Chapters 3, 5, and 6 discuss automated
techniques to steer this step, including several extensions which are not directly
essential for our demonstrator here. The space-time (S-T) transformation step
is concerned with the allocation of a processor and a time slot to each node of the

DG. To that end, we specify a space-time transformation matrix T = [~],
in which >. is a schedule vector and P is a projection matrix describing the
processor assignment. Thus, we reindex each node by transforming its index "/
to T . "/. Figure 9 shows the transformed dependence graph of Floyd-Steinberg
for>. = [3,4]t and P = [0, l]t. In this figure, the vertical axis can be interpreted
as the processor axis and the horizontal axis as the time axis.

In case of a systolic array, the schedule vector>' specifies that the AST node at
index point "/ is to be executed at time step At ."/. The vector Aalso specifies that
the data which are transmitted over an edge defined by a dependence vector
di is delayed At . di time steps, so that the data will arrive in time at the node
of the DG by which they are to be processed. In case of a wavefront processor
array, the schedule vector >. only specifies the ordering of the computations
and the data storage capacity of the edges. Furthermore, the node at index
point "/ will be mapped onto the processor at index point p. "/ during the array
synthesis step. Note that the S-T transformation only defines the S-T allocation

www.manaraa.com

86 CHAPTER 4

conceptually. The actual allocation is decided on during array synthesis (see
section 6).

4 Regularization

At this point, we have obtained a dependence graph consisting of regular sub
graphs in each of which a different operation takes place. If these parts have to
be mapped to the same array processor, a scheduling and memory allocation
problem arises, which we will now address.

One way to solve this problem is by replacing each node in the DG by a com
pound node that is capable of performing anyone of the possible behaviors of
the nodes. This corresponds to a processing element (PE). The selection of the
proper behavior of a compound node is then done by supplying control data
to the regularized DG. The process of combining all possible behaviors into an
array consisting of a set of identical compound nodes is called regularization.
The compound node can either be described by an AST node or by a structure
node (hence hierarchy!).

The control edges that are necessary for this selection process are "woven" into
the dependence graph. This is done in such a way that each node domain
and port domain in the original DG node can be uniquely identified by the
data at these control edges. For each boundary between domains, a "one bit"
control dependency is added to the new dependence graph that runs in parallel
with this boundary [25, 27]. Figure 10 shows the regularized version of the
dependence graph of Floyd-Steinberg.

One way of implementing the compound node is by a structure node, which
contains all the different functions as individual nodes, a number of input and
output selectors that provide for the routing of data from and to the nodes,
and a number of control edges. Figure 11 shows the structure node of the
Floyd-Steinberg DG. The dashed edges in the figure are the edges that control
the data flow in the structure node. Another, more effective, way is to combine
the functions into a single AST, as, for example, is done in an ALD.

A DG may be regularized in many ways: not all parts of the graph have to
participate. We have defined a design function "regularize" which aIlows the
designer to select parts that must be merged. It will automatically generate a
new global part encompassing the selected pieces.

www.manaraa.com

The HiFi system 87

: ~ : .
: 000 000 000 000: 000

;00- .0.-'.D--'.D.~.Do
;0 •• ••••••••• : •• 0

:-, " "T'X'''f'X''l''~f
;0 •• ; ••• ••• ••• ;.0

°O·~·O·-.·D·-.·D·~·Do
0 •• ; ••• • ••••• ; •• 0

'fX~X~XVX'f
0 •• : ••• ••• • •• ; •• 0

oD·~·D·-.·D·-.·D·~·Do
,0 •• ; ••• •••••• ; •• 0

:---+--~···v··X··~···X··v··X··-+··-
: 0 ••~l~. • • • • • • •• : •• 0

;oOo~.D.--.O.--.D.~.Do

~.~..~.~.. .1 ~.~..~ ~ .~. ~ ~. ~.~ .. 1. ..~. ~ .~.

D Compound node

• destination port

o input port
• origin port

o output port

Figure 10 Regularized version of the piecewise regular DC. Inside the
dotted boxes, the control data that arrive at the ports of the compound
nodes are the same. The control data define the actual functionality of
the compound node.

cntrUn

,,
: control
,,

: : I
:"-_~ I

,
: I: I

!'---~--------',,,,,,,,,
:cntrl out :

.........................t....... ~._ .._.._.._.. __t.

. ,..,
,,
,,,
,
,,
,,

edjn

control flow

source node

sink node

data flow

If--

01-

Figure 11 Compound node of the regularized Floyd-Steinberg DG im
plemented as a structure node. The triangular nodes denote input (Lxxx)
or output (o-xxx) selectors. The circular node is the original AST node.
The bars denote source and sink nodes.

www.manaraa.com

88 CHAPTER 4

6 FIXED-SIZE ARCHITECTURE DESIGN

In general, the regularized DG is still not suited to be mapped directly on
hardware because it would result in a processor array of a size dependent on
the parameters in the original description. This is, for instance, true for the
Floyd-Steinberg demonstrator where the parameters M and N can vary over
wide ranges.

1 Partitioning

We have defined a design step partitioning-clustering [5, 6, 7] to decompose the
regularized DG in a network of similar reduced-size DGs, called tiles. We call
this network the tile graph. An alternative approach, based on the same prin
ciples but tuned towards latency-driven applications, is discussed in chapter 3.

In figure 12, we illustrate the partitioning procedure. The DG is cut by n sets
of uniformly spaced and parallel hyperplanes that have >'1, ... ,>'n as normals.
These partitioning planes are always chosen parallel to the boundary planes
of the regularized DG and their interspacing is chosen such that all tiles have
equal size. The regularity in function, dependency, and shape guarantees that
both the tile and tile graph can be described, in a reduced way, by DG nodes.
The construction of both graphs starts with selection of the partition planes
that define the shape of the tile. Generally, this shape will not be congruent
with the DG. Therefore, it may be necessary to adjust the shape of the DG
by extending it with nodes. This shape adjustment is considered as a form of
regularization.

The tile has one node domain and is structurally equivalent with the regularized
DG. The node domain of the tile graph iterates the tiles. It is the same as the
domain of the original DG, but spread out on a lattice with the size of the
tile. Figure 12 also shows that dependencies cut by partition planes result in
intertile dependencies at the tile graph level, and in input and output ports at
the tile level. Note that these ports form the interface of the tile. The intertile
dependencies are hierarchical and composed of edges between the ports of the
port domains of the tile.

2 Partitioning schemes

After partitioning, we have achieved a hierarchical decomposition of the DG
in two DGs, the tile graph and the tile, both having a reduced and possibly

www.manaraa.com

The HiFi system 89

----19--

Figure 12 A part of the Floyd-Steinberg DC partitioned by two set of
parallel and equidistant hyperplanes (left). In order to reconstruct, e.g.,
the dependency d-.eb = (-1, l)t at tile graph level, the tile needs three
input and output ports, Bini and Bouti, respectively. On the right, the
figures show the hierarchical dependencies dJL1, d..B..2, and d..B--3, that
complete the reconstruction of d_eb at tile graph level.

fixed size. This allows us to apply the space-time transformation step at both
levels independently. There are various schemes for doing so. Each results in
an architecture with its specific memory, control, and processor structure. The
two basic schedule and allocation schemes [16] are:

• Locally Sequential, Globally Parallel (LSGP)

Here, the tiles are processed in parallel on a fixed-size processor array of
which each processor executes the operations of a tile sequentially. Conse
quently, a processor of the array needs internal memory to store interme
diate data of a tile. This scheme is used for increasing processor efficiency
or slowing down I/O rate.

• Locally Parallel, Globally Sequential (LPGS)

This scheme works the other way around. Here, the tiles are sequentially
processed on a fixed-size array that executes the operations of a single tile
in parallel. It needs memory external to the array to store data for another
tile. Typically, LPGS is used to execute huge and parametrized algorithms
on a relatively small and fixed size array.

www.manaraa.com

90 CHAPTER 4

3 Final array synthesis

At this point we have reached the stage where, via regularization and partition
ing, a simple dependence graph at the top hierarchical level has been obtained,
for example, as shown in figure 12. The tile graph is a regular structure of tiles
that have a reduced and possibly fixed size. However, the tile graph still con
tains an individual node for each computation and is, therefore, not a realistic
architecture in which processor elements are reused as much as possible. To
that end, we introduce the "array synthesis" step that projects the DG onto
a fixed-size architecture. Obviously, the nodes of the resulting architecture no
longer possess the property of single execution. Consequently, this step will
always be the final one of our trajectory. The synthesis step must fit within
the concept of hierarchy and stepwise refinement.

Array synthesis is inextricably tied with S-T transformation in the sense that it
realizes the array as has been defined conceptually during S-T transformation
(see section 5). The procedure is straightforward and is based on the projection
of nodes and dependencies (with similar properties) onto each other. Due to
S-T transformation, the dimensions of each node domain are tagged with either
a space or an ordering interpretation. The processor space of the resulting array
is obtained by projection of the node domains on the space dimensions. The
execution order of the operations projected onto a single processor is given by
the time dimensions. Figure 13 illustrates the synthesis of the Floyd-Steinberg
tile. It shows the tile before and after projection. The port domains, which
form the interface of the DG tile, are not projected but are converted into
so-called port adaptors.

In order to understand the function of port adaptors, suppose that an output
port of a tile is connected to an input port of another tile by a hierarchical edge
and that we have projected both tiles. We have illustrated this in figure 14. It
shows the input and output adaptors corresponding to the input and output
ports, respectively. The edges between the adaptors form the intermediate
tile storage. The processor on the left writes to this storage by selecting the
appropriate edge via its output adaptor. The processor in the tile on the
right reads from this storage via its input adaptor. For addressing the proper
storage location (edge), the processor has its own local index control, based on
the scheduling information. This way of interfacing allows us to define a S-T
allocation for each node (tile) individually, at the expense of a complex random
access selection mechanism.

www.manaraa.com

The HiFi system 91

BouU

_ -'",...------ '~----...,

Figure 13 The result of array synthesis (right) of the space-time trans
formed Floyd-Steinberg tile (left). The triangles are the adapters that
resolve the fan-in and fan-out problems of projection.

tile array A

PE

output
adaptor

data

-----;>.
control

-E - --

control

tile array B

PE

Figure 14 Interconnection structure between two processors, resulting
after projection of two connected tiles. The triangles represent the [0
adapters. The edges between the adapters form the intertile storage.
Processor A writes to the storage via its output adaptor. Processor B
reads from the storage via its input adaptor.

www.manaraa.com

92 CHAPTER 4

In case the S-T allocation of the tiles are the same, the interface structure can
be simplified to a FIFO because the order of writing and reading is similar
although with unknown time delay. In our case, this requirement will always
be fulfilled because the tiles are the same after partitioning.

1 CONCLUSION

One major conclusion from our efforts in building HIFI stands out: it is indeed
possible to build a design system that covers the complete trajectory from be
havioral specification to electronic hardware and utilizes just one consistent set
of mathematical concepts for doing so. Because of its uniformity and the way
it handles regularity, the model we use caters for hierarchy and abstraction in
a natural way. Object-oriented programming takes care of uniformity in docu
mentation and representation, and the possibility of extensive interaction [14].
Most important, however, is the automation of synthesis tasks made possible by
the mathematical construction. The results for the Floyd-Steinberg demonstra
tor clearly illustrate the importance of the dependence graph extraction, the
regularization and partitioning steps, and the design automation techniques
that have been outlined in this chapter.

REFERENCES

[1] J. Annevelink. HIFI, a design method for implementing signal processing
algorithms. PhD thesis, Delft University of Technology, Jan 1987.

[2] J. Backus. Can programming be liberated from the von Neumann style?
A functional style and its algebra of programs. Comm. ACM, 21, pages
613-641, Aug 1978.

[3] J. Bu. Systematic design of regular VLSI processor arrays. PhD thesis,
Delft University of Technology, May 1990.

[4] J. Bu, E. Deprettere, and L. Thiele. Systolic array implementation of
nested loop programs. Proc. Int. Conf. Application Specific Array Pro
cessing, Vol. 4, pages 31-42, Sep 1990.

[5] J. Bu and E. Deprettere. Processor clustering for the design of optimal
fixed-size systolic arrays. Algorithms and Parallel VLSI Architectures, Vol.
A, pages 341-362, North Holland, Elsevier, Amsterdam, 1991.

www.manaraa.com

The HiFi system 93

[6J E. Deprettere. Example of combined algorithm development and architec
ture design. Proc. Advanced Signal Processing Algorithms, Architectures,
and Implementations III, San Diego, California, July 1992.

[7J E. Deprettere. Cellular broadcast in regular array design. Proc. VLSI Sig
nal Processing Workshop, Computer Science Press, 1992.

[8J P. Dewilde and E. Deprettere. Architectural synthesis of large, nearly
regular algorithms: design trajectory and environment. Annales des
telecommunications, Vol. 46, pages 48-59, 1991.

[9] P. Feautrier. Parametric integer programming. Recherche Operationnelle;
Operations Research, 22, number 3, pages 243-268, 1988.

[10] P. Feautrier. Data flow analysis of array and scalar references. Recherche
Operationnelle; Operations Research, 1991.

[l1J F. Fernandez and P. Quinton. Extension of Chernikova's algorithm
for solving general mixed linear programming problems. Internal report,
IRISA, Rennes, France, 1988.

[12] P. C. Held. HiPars Users' Guide. Internal report, Delft University of Tech
nology, Delft, Nov 1991.

[13] P. N. Hilfinger. Silage: a language for signal processing. Internal report,
University of California, Berkeley, 1984.

[14] A. J. van der Hoeven. Concepts and implementation of a design system for
digital signal processor arrays. PhD thesis, Delft University, Delft, October
1992.

[15] C. A. R. Hoare. Communicating sequential processes. Prentice-Hall Inter
national, 1985.

[16] A. K. Jainandunsing. Parallel algorithms for solving systems of linear equa
tions and their mapping on systolic arrays. PhD thesis, Delft University
of Technology, January 1989.

[17] S. Y. Kung, J. Annevelink, and P. Dewilde. Hierarchical iterative flowgraph
integration for VLSI array processors. VLSI Signal Processing, IEEE Press,
New York, 1984.

[18] S. Y. Kung. VLSI Array Processors. Prentice-Hall International, 1988.

[19] R. Lipsett, C. F. Schaefer, and C. Ussery. VHDL: Hardware Description
and Design. Kluwer Academic Publishers, Boston, 1989.

www.manaraa.com

94 CHAPTER 4

[20] G. L. Nemhauser and L. A. Wolsey. Integer and combinatorial optimiza
tion. John Wiley & Sons, Inc., 1988.

[21] W. M. Newman and R. F. Sproull. Principles of Interactive Computer
Graphics. McGraw-Hill, 1981.

[22] P. Quinton. Systolic Arrays. Esprit Project BRA 3280, Deliverable report
INRIA/YlmI2/2.2/1, IRISA, Rennes, France, April 1990.

[23] S. K. Roo. Regular iterative algorithms and their implementations on pro
cessor arrays. PhD thesis, Information System Lab, Stanford University,
October 1985.

[24] J. Teich and L. Thiele. Partitioning of processor arrays: a piecewise regular
approach. INTEGRATION: The VLSI Journal, 1992.

[25] A. J. Teigh and L. Thiele. Control Generation in the Design of Processor
Arrays. Int. Journal on VLSI and Signal Processing, 3, number 2, pages
77-92, 1991.

[26] L. Thiele. On the hierarchical design of VLSI processor arrays. IEEE Symp.
on Circuits and Systems, Helsinki, pages 2517-2520, 1988.

[27] P. Wielage. The partitioning of piecewise regular dependence graphs. Mas
ter's Thesis, nr 91-109, Delft University of Technology, January 1992.

www.manaraa.com

5
ON THE DESIGN OF TWO-LEVEL

PIPELINED PROCESSOR
ARRAYS

D. J. Soudris, E. D. Kyriakis-Bitzaros
V. R. Paliouras, M. K. Birbas

T. Stouraitis, C. E. Goutis

University of Patras

ABSTRACT

This chapter addresses the design of two-level pipelined processor arrays. The
parallelism of algorithms is exploited both in word-level and in bit-level opera
tions. Given an algorithm in the form of a Fortran-like nested loop program, a
two-step procedure is applied. First, any word-level parallelism is exploited by
using loop transformation techniques, which include a uniformization method,
if required, and a decomposition of the index space into disjoint sets, which
may be executed in parallel. Second, the architecture of the processing element
is specified in detail by analyzing its operation at the bit level. Processors using
any arithmetic system may be described. The overall design methodology is
illustrated by systematically deriving a processor array for the one-dimensional
(I-D) convolution algorithm. It is based on an inner product step processor
that utilizes residue number system arithmetic.

1 INTRODUCTION

Recent advances in VLSI technology have made considerable impact on the de
sign of general- and special-purpose parallel processors for numerically intensive
applications, as required in, for example, high-performance scientific comput
ing, involving the solution of difference equations. The same is true in signal
and image processing, such as in high throughput radar or sonar applications.
The increasing demandfor concurrent processing has led to the development

95

www.manaraa.com

96 CHAPTER 5

of compilers for multiprocessors [16] and to the hardware implementation of
application-specific processor arrays [8].

An algorithm comprises two levels of parallelism: the word level and the bit
level. The parallelism of the word-level operations affects the topology of the
processor array that implements the algorithm, while the parallelism at the bit
level affects the functionality and the structure of each processing element (PE)
of the array. The topic of word-level parallelism has been extensively studied
during the last decade, and many systematic methodologies have been presented
in the literature for mapping various classes of iterative algorithms onto regular
processor arrays, and particularly onto systolic arrays. These methodologies
embody fundamental concepts from the seminal work on uniform recurrences
by Karp et al. [5] and the hyperplane and coordinate methods of Lamport [10]
as well as the systolic array concept [7]. The existing methodologies can be
grouped into three broad categories with respect to the initial description of
the algorithm that they can manipulate. Methodologies of the first category
handle algorithms expressed in terms of uniform recurrence equations (UREs)
or regular iterative algorithms (RIAs), which are characterized by constant
dependencies [8, 12, 19, 25]. The second category models the algorithm using
affine recurrent equations (AREs), single assignment codes (SACs), or weak
single assignment codes (WSACs), whose dependencies may be linear functions
of the loop indices [17, 24, 18,20]. Finally, there are a few methodologies [2, 1]
that use imperative nested loops for algorithm specification.

The aforementioned methodologies exploit the inherent parallelism and pipelin
ing of the algorithm only at the word level; they do not address the detailed
design of the PE, which performs an operation within the array. An exception
to this is described in chapter 6, but also there the existing parallelism at the
bit-level has not been thoroughly exploited. Only two major approaches for de
signing a processor array down to the bit level have been proposed [6, 11]. The
first one uses two-level pipelining in a way similar to the methodology presented
here, while the second one treats the entire problem at the outset as a bit-level
problem. A careful study of these design approaches reveals that they cover
a limited number of applications without a formal general description of the
array architectures. However, the first approach is superior, since a bit-level
design approach can be embedded in various word-level methodologies. The
second approach seems rather restricted because there is no formal method for
expressing a word-level algorithm in its equivalent bit-level form.

In this chapter, a two-level systematic methodology for synthesis of regular
processor arrays is described. In the first step, an algorithm expressed in
Fortran-like nested loops is transformed into a URE with parametric depen-

www.manaraa.com

Two-level pipelined processor arrays 97

dence vectors (DVs) (see also chapters 6 and 4). The derived URE is mapped
to the desired regular array architecture by using a decomposition technique,
which is based on the existence of independent subsets of variable instances in
the index space [9]. This property has also been used in compiler optimization
approaches [3, 15, 21], and provides more efficient solutions compared to other
processor array design techniques, which transform the whole index space into
processor space and time. When the DVs are linearly independent, data move
ments are required only between neighboring PEs, while the execution time
of the algorithm is optimum or near-to-optimum depending on the available
hardware.

The second step is a systematic graph-based methodology for designing the
PEs of the array, starting from the bit-level expression of an operation and
employing as basic building block the one-bit full adder (FA). The proposed
methodology synthesizes bit-level systolic arrays for a wide class of arithmetic
and logical operators, which are common in real-life applications. These oper
ators should be described by multiple sums of products and may be expressed
in any arithmetic system, e.g., residue number system (RNS) [23], binary 2's
complement, or signed-magnitude. A product should be any function of the
input bits times any function of powers of two, which is the adopted radix. The
target architecture style used here is the regular array processor style. The de
pendence graph of the bit-level algorithm, which can be descibed formally by a
set of UREs, is used for the systematic synthesis of the bit-level architectures.

The remainder of the chapter is organized as follows. In section 2, the transfor
mation technique of a nested loop to URE form is discussed. Next, the mapping
of the derived URE to the word-level processor array using a decomposition
technique is presented in section 3. The proposed bit-level methodology for de
riving the FA-based arrays is then developed in section 4. The synthesis steps
in the proposed methodology are illustrated throughout the design trajectory
by means of a realistic application: a I-D convolution algorithm which is used
in many scientific applications and might also be employed in other domains,
e.g., in string matching for text recognition. Several alternative regular arrays
for different system requirements are produced. The PE of the processor array
operates using RNS arithmetic to obtain very high throughput. Finally, some
conclusions are offered in section 5.

www.manaraa.com

98 CHAPTER 5

2 TRANSFORMATION OF NESTED LOOPS TO

DRES

The first goal in our methodology is to transform an algorithm given in nested
loop form, which may include non-constant dependencies, to an equivalent URE
with localized parametric DVs. The motivation for this starting point is also
discussed in chapter 4. The applicability of such a transformation is restricted
by the complexity of the index functions of the feedback variables. Therefore,
our attention is focused on WSACs [20], which are characterized by identical
linear index functions of the feedback variable. In this approach UREs are
derived directly, in contrast to the technique described in chapter 4 where the
dependence graph (DG) is extracted.

1 Definitions

Definitions of the fundamental terms used throughout this chapter are given
next. The general form of a nested loop considered here is:

for iN = lN to UN, stepN
loop body;

next iN

The set IN = {i I i = (il,i2, ... ,iN),lj < i j < Uj, j = 1,2, ... ,N} is called
index space or iteration space of the loop. Any element i E IN is called an index
vector. Without loss of generality, it can be assumed that lj =1 and stepj = 1.
Any statement of the loop body has the form:

XP(z(i)) = q>(X1(fl(i)), X 2(f2(i)), ... ,XP(fP(i)), ... ,Xq(fq(i)), ...)

where fq(i) =Ui(i), fi(i), ... , n
q
(i)) and z(i) = (zl(i),Z2(i), ... , znp(i)), with

n(i) and zr(i), being functions of the loop indices and n q being the dimension
of X q, nq ::; N.

A variable that appears in both sides of a statement is called a feedback variable.
Any element of the set {Xq(fq(i)) liE IN} is called a variable instance.
Variables with common name but different index functions are considered as

www.manaraa.com

Two-level pipelined processor arrays 99

different variables. The set of the index space points where a variable appears
is called the propagation space of the variable.

Let a variable instance computed at a point i 1 use the value of a variable in
stance generated at another point i 2 • The vector d = i 2 - h is called dependence
vector. The dependence graph (DG) is a directed graph, where each node cor
responds to a point i E IN and each edge corresponds to a DV joining two
dependent points of the index space.

2 Transformation methodology

In order to transform a nested loop with linear dependencies into an equivalent
URE form, the propagation space of each variable should be determined and
the localization of the data movements should be performed. Generally, prop
agation exists when the propagation space of a variable instance contains more
than one node of the index space. The propagation in the index space can take
two different forms, namely broadcast operations and ''fan-in''. More specifi
cally, broadcasting occurs when a value of an instance is distributed to many
nodes of the space, while fan-in occurs when different values of an instance are
concentrated from many nodes to one node. The latter is the main feature of
WSACs [20].

Formally, the propagation space of a variable Xq(fq(i» is the linear subspace
of the index space defined by the set of equations

f~ (i) = Cit, K, = 1, ... ,nq (1)

where Cit represents constants. The set of index space points where a vari
able instance appears is the union of the propagation spaces of all variables
addressing the instance.

Propagation of a variable Xq(fq(i» occurs if equation (1) has multiple solutions,
which means that at least one of the following two conditions is satisfied:

• n q < N

• There is at least one i3(i) E U~(i) I K, = 1, ... ,nq } for which the following
relation holds:

n q

T:Ji) = L av"fv(i)
v=l,v:;Cj.l

(2)

where "l:(i), 1~(i) are the linear parts of i3(i) and i3(i), and av are con
stants.

www.manaraa.com

100 CHAPTER 5

Consequently, the dimension DB of the propagation space of xq is DB = D1 +
D2 , where D1 = N - n q and D2 is the number of f~(i) functions satisfying
equation (2).

According to the above conditions, broadcasting occurs when a variable appears
in the right-hand side of the statement only. Fan-in is associated with feedback
variables and exists when the statement can be written in the following form:

XP(z(i)) = XP(fP(i)) <:) ~'(XIW(i)), ... ,XP-l(fP-1(i)),

XP+l (fP+l (i)), ... ,XU(fU(i))) (3)

where fP(i) = z(i) and <:) denotes an associative and commutative opera
tor. The partial results ~'(XIW(i)), ... ,XU(fU(i))) of each variable instance
XP (Cl , C2, ••• , cnq) of the feedback variable are distributed over the associated
propagation space. Each variable instance is updated continuously in all nodes
of its propagation space due to ff(i) = zr(i). Since the operator <:) is associa
tive and commutative, the partial results should be combined. The final result
is placed in any node of the variable's propagation space.

In this case, the DVs can be seen as integer vectors that express the movement of
the value of a variable instance within its propagation space. Consider any two
nodes h = (in, ... , i1N) and h = (i21,'''' i2N) included in the propagation
space of a variable. The coordinates of hand i 2 are not independent since
equation (1) holds for both nodes. Therefore, the following equations should
be satisfied:

f~(h) =f~(id, II: =1,2, ... , n q (4)

The number of the independent equations in equation (4) is equal to N - D s .

Therefore, D s additional equations of the form:

i2v = i 1" + dv, v =1,2, ... , Ds (5)

should be used, where the parameters dv are arbitrary integers [1]. The com
bination of equations (4) and (5) results in solutions for the remaining coordi
nates. The derived solutions have the form:

i2v=i1v +dv, v=Ds +l, ... ,N (6)

where dv = cPv(d1,d2, ... ,dDJ and cPv is a linear function of (d1,d2, ... ,dDJ.

Therefore, the DVs can be written as d = (d1,d2, ... ,dD.,dD.+l,'" ,dN),
where the first DB coordinates can be arbitrarily selected, while the remaining
N - D s coordinates are linear combinations of the first ones. The initial nested

www.manaraa.com

Two-level pipelined processor arrays 101

loop can be rewritten in a URE form using the derived parametric DVs. Due
to the localization of the propagation space, the broadcast variables should be
initialized in a set of points of the index space specified by the corresponding
parameters di , i = 1,2, ... , N. In case of fan-in variables, localization leads
to the generation of partial results, which should be concentrated using the 0
operator in order to obtain the correct results from the transformed algorithm.
A more formal and analytical description of the above methodology can be
found elsewhere [22].

This localization technique differs from the approach presented in chapter 6
in that a single choice is made before the space-time mapping (see section 3)
is considered. As indicated in chapter 6, the pros and cons of the different
approaches depend on the application domain.

3 Application to I-D convolution

As mentioned, the proposed methodology will be illustrated by the systematic
derivation of a variety of regular processor arrays implementing I-D convolu
tion. The initial description of the algorithm in nested loop form [8] can be
represented as follows:

for i = 0 to 2n - 2

for j = 1 to i

y(i) = y(i) + u(j)w(i - j);
next j

next i

Since the statement in the loop body is of the form described by equation (3),
fan-in occurs for the variable y(i). The direction of the fan-in is along the j
axis since equation (1) results in i = const. The other two variables u(j) and
w(i - j) satisfy the conditions for broadcasting. The former is broadcast along
the i-direction since equation (1) results in j = canst. The w(i - j) variable is
broadcast along the (i - j)-direction since equation (1) results in i - j = const.

For the determination of the parametric DV for y(i), consider any two nodes
h = (i1,jI) and i2 = (i2,i2) on its propagation space. From equation (4) we
obtain:

(7)

www.manaraa.com

102 CHAPTER 5

Since D s = 1, it can be derived from equation (5) that one complementary
equation of the form

12 = j1 + d1j (8)

should be used. Therefore, the associated DV is d 1 = (0, d1j). Similarly, the
DVs for the variables u(j) and w(i - j) are found to be dz = (dZi,O) and
d 3 = (d3i, d3i), respectively.

Using the derived parametric DVs, the original code of the algorithm is trans
formed to the following parametric URE:

for i = 0 to 2n - 2

for j = 1 to i

u(i,j) = u(i - dZi,j);
w(i,j) = w(i - d3i ,j - d3i);
y(i,j) = y(i,j - d1j) + u(i,j)w(i,j);

next j

next i

The initialization points for variables u(i) and w(i - j) are specified by the
parameters dZi and d3i , respectively. The final correct results are obtained by
adding the partial results located in the last d1j nodes of each column.

3 WORD-LEVEL ARRAY DESIGN

The space-time mapping of the parametric URE derived in the previous step is
accomplished by decomposing the index space to independent subsets of vari
able instances. The number of these subsets depends on the DVs and can be
modified by alternative selection of the URE parameters. This results in a
variety of array architectures in terms of size, PE utilization, and interconnec
tion patterns. This method is complementary to the approaches introduced
in chapters 3, 4, and 6, as indicated there. However, many of the proposed
techniques can be combined.

1 Mapping of UREs

In most existing regular processor array synthesis methodologies [8, 12, 19], the
index space of a recurrence is viewed as an entity, while linear allocation and
timing functions are used to determine the parallel execution of the algorithm.
A different approach to the mapping problem is presented here, based on the
existence of independent subsets of variables in the index space of many ap-

www.manaraa.com

Two-level pipelined processor arrays 103

plications [9, 3, 15, 21J. This separation leads to processor arrays with higher
PE utilization rate and simpler interconnection patterns. Also, mapping of
an N-D algorithm on an N-D processor array can be performed, in contrast
to the aforementioned mapping methods. Recurrences of dimension N having
md = N linearly independent DVs are examined first. Then, the results are
extended to cover the case of linearly dependent DVs, as well as the case of
md :I N linearly independent DVs. For simplicity, the execution time of the
statements is assumed to be unitary.

Any point, i, of the index space can be expressed as an integer-coefficient linear
combination of the DVs, plus an integer initial vector im E IN [15J:

md

i = im + Lajdj
j=l

(9)

For each im , a subset of the index space is defined. Any point of a subset can be
used as an initial vector for this subset. Therefore, if No is the number of the
different subsets of the index space, then only No initial vectors are required
and thus m = 1,2, ... , No, No ~ 1. In general, the number of independent
subsets is equal to the greatest common divisor of the minor determinants of
the dependence matrix [25J. Let T1 = {i I t(i) = I}, where i is a point of the
index space and t(i) is its execution time [5J. If im E Til m = 1,2, ... ,No then
any point of the index space can be written in the form of equation (9), each
point of the index space belongs to one subset only, and there is no dependence
between different subsets.

The computation of {aj} in equation (9) is equivalent to a change of base in an
N-D Euclidian space. In general, the DVs which form the new base are neither
orthogonal nor unitary. Peir and Cytron [15J use the "minimum distance"
method to transform the dependence matrix into an upper triangular matrix.
This transformation reduces the required calculations for the computation of
{aj}. Alternative techniques for the determination of the independent subsets
have also been suggested [3, 21J. These overcome the problems of the "minimum
distance" when the DVs are linearly dependent, and produce a set of initial
vectors for the labeling of the independent subsets. Still, without affecting the
algorithm, the new coordinate system can be considered orthogonal and the
vectors of its base unitary, since the sequence of the operations is not affected
by such a normalization.

The mapping of the normalized subsets is accomplished by the determination of
a timing and an allocation function. The timing function is obtained by solving
an integer programming problem for each subset. The problem constraints are

www.manaraa.com

104 CHAPTER 5

Figure 1 The three independent subsets within the index space.

similar to those used by Moldovan and Fortes [12]. Due to the normalization
of the graph of the subsets, the above problem provides the hyperplane normal
to the direction (1,1, ... ,1) as the optimum solution, i.e. the execution time
of each point is:

ffid ffid

t(i) = Laj - min{Laj} + 1.
j=l j=l

(10)

As an example, cOhsider a recurrence with DVs d 1 = (2,1) and d 2 = (1,2).
In the index space, there exist three independent subsets labeled r1 = (0,0),
r2 = (1,0), and r3 = (2,0), as shown in figure 1. The normalized graphs of
the subsets are shown in figure 2 together with the timing function i~ + i~ = c,
c = 1,2, ...

Finally, the subsets are allocated to an M-D processor array. If M < N, then
k = M - N projections should be performed on the graph of each subset.
The projections are performed along the axes in order to preserve the nearest
neighbor communications. The resulting M-D graph can be mapped one to
one onto the PEs of a mesh-connected array.

The execution time of each subset is optimum when k = 0 or k = 1. This is
true since there are no simultaneous operations along the direction of any axis,

www.manaraa.com

Two-level pipelined processor arrays

t=; •r, :..~..~
-,-,-, t=~:..~..~..~

t-~·"'·"'·~ :.. :..~..~- '. I.~.-i :.. :.. .;
I f I I I

(0,0) - -,-, '<0,0) :.. :..~.... :...
Figure 2 The three normalized subsets.

105

(11)

so the operations can be executed successively on a single PE. Consequently,
assuming that there is no overlap in the execution of different subgraphs, the
upper bound for the execution time (for k ~ 2) is tup = Qts, where ts is
the critical-path time of the (M + 1)-D subgraph, and Q is the number of the
(M +1)-D subgraphs in which the N-D graph of the subset can be decomposed.
For example, a cubic graph having an edge of length nand n3 nodes can be
decomposed in to n planar subgraphs, each containing n 2 nodes.

When the subsets can be executed on the array without simultaneous operations
being allocated to one PE, the execution time of the algorithm is optimum if
k ::; 1, or near-to-optimum if k ~ 2. However, a large number of PEs are
required. Assuming that all subsets are executed in pipeline fashion by the
processor array, the upper bound of the total execution time of the algorithm is
ttot = tup + P(No - 1), where P is the maximum number of points of a subset
mapped on a PE. The time ttot provides the upper bound for the execution
time; this is because the possible overlap of the execution of the subsets cannot
be taken into consideration, since the exact topology of each graph is not yet
known.

A measure of the efficiency of the mapping method and the resulting processor
array is the PE utilization, which is defined as:

Nop
1J=-

NPET

N op is the number of operations, N PE is the number of PEs of the array
processor, and T is the execution time of the algorithm. Assuming that the
graph of the subsets and the processor array are hypercubes with an edge of
length n, the PE utilization is an increasing function in terms of No and a

www.manaraa.com

106 CHAPTER 5

+,

#,

'"+, "#'" N-:21
#' ..#. 'u

-to "#..•#

N-:2.. , 'u'." ..
...'.,

•

'.

o 1 2 3 4 5 6 7
Array Processor Dimension (n)

Figure 3 PE utilization of a processor array.

decreasing one in terms of n. Figure 3 depicts the efficiency as a function of M
for different values of Nc. The efficiency decreases slightly for large values of
n, e.g., for n = 100 it recedes about 1%.

So far, it has been assumed that md = N and that the DVs are linearly in
dependent. When md < N and the DVs are linearly independent, the graph
of any subset lies on a md-D subspace of the index space. In this case, our
methodology can be applied without modification. Indeed, due to normaliza
tion, the derived graphs exhibit identical structure to the ones derived for the
case md = N. In the general case, the DVs may be linearly dependent. Let
mi (mi ~ N) be the number of the linearly independent vectors and {/Jjl} the
coefficients of the linear combination. In order to determine the independent
subsets, a new base of linearly independent vectors E j should be specified, so
that the total number of the subsets is preserved and all DVs are written as an
integer linear combination of the new base. Also, some additional constraints
are imposed for the determination of a valid timing function. More specifically,
the hyperplane normal to the dIrection (1,1, ... ,1) is not always a permissible
timing function, depending on the values of {/Jjl}. In this case, the relation
given by Karp et al. [5) should be used to specify the timing function.

www.manaraa.com

Two-level pipelined processor arrays 107

Also, non-nearest neighbor communication may be required in the processor
array, depending on the values of {,Bjl} and the projection directions. In order
to eliminate long-distance data movement, the projections should be performed
along the directions characterized by the larger values of {,Bjl}. The relations
for the upper bound of the execution time will hold for a special-purpose array
architecture only, which has all the required non-local links. If this is not the
case, the delays for data movement using the existing links should be taken
into account as a multiplication factor in the estimation for the total execution
time. These techniques have been implemented in tools running on a PC.

2 Application to I-D convolution

The proposed methodology is again illustrated for the I-D convolution. We
start from the URE derived in section 2.3. The DG of the algorithm for n = 8
considering that d1j = d2i = d3i = 1 is similar to that presented by Kung [8]
and has one subset of variables only. The initialization part of the index space
contains the nodes of the line j = 0 for the variable u(j) and the nodes of the
line i - j = 0 for the variable w(i - j). The results are obtained in the last node
of each column. By using the timing function t = i + j, the total execution
time is found to be 22 time units. Employing projection along the i-direction,
the DG is mapped into a linear array comprising eight locally interconnected
PEs with a PE utilization of 36%.

Assuming d1j = d3i = 2 and d2i = 1, the derived DG is shown in figure 4.
The initialization part for the variable w(i,j) includes the first two rows, and
the results are obtained by adding the partial results located in the last two
nodes of each column, as is shown by the dashed line in figure 4. In this
DG, two independent subsets of variables can be defined for rl = (0,0) and
r2 = (1,1). The nodes of the two subsets are shown by hatched and white
circles, respectively. Using d 1 and d2 as unitary vectors, after normalization
the new DVs are d~ = (0, 1),d2= (1,0), and d; = (2,1). The line i' + j' = c
represents a valid timing and each subset can be executed in 17 time units.

With a projection along the i' axis, each subset can be executed by four lin
early interconnected PEs. The two subsets can also be executed on the same
hardware in pipeline fashion. In this case, the execution of the second sub
set should start eight time units after the first one. Consequently, the total
execution time of the convolution algorithm increases to 25 units, while the
PE utilization becomes 64%. By utilizing this allocation scheme, the required
accumulation of the partial results of y(i,j) is performed inside each PE, and
thus there is no need for extra hardware and time. The resulting linear array is

www.manaraa.com

108 CHAPTER 5

Figure 4 The convolution DG for d1j = d3i = 2 and d2i = 1.

shown in figure 5. Each PE is labeled with the time slots in which it is active
for the execution of each subset. Two links are required for the data movement
caused by d~ and d3, while the movement described by d2is realized within
any PE.

An alternative architecture can be derived if projection along the j'-axis is
performed. In this case, 14 PEs are required, and non-local links should be
employed in order to achieve the minimum execution time. Moreover, the
methodology offers the flexibility to produce a variety of alternative arrays, de
pending on the specifications, by selecting DVs that lead to different partitions
of the index space.

4 BIT-LEVEL ARRAY DESIGN

As argued in section 1, the throughput of word-level arrays is in several cases
not sufficient. Therefore, the bit-level parallelism should also be exploited.
Assume that a PE of an array processor has W words as inputs, each denoted
Bl , e=0,1, ... ,W - 1, and bl,vl are defined by:

nt-1

B1 = L bl,vt
2Vt

Vt=O

(12)

www.manaraa.com

Two-level pipelined processor arrays

y(O)...y(7)

109

u(l)

w(O)•••w(7)

1-8(8)
9-16 (b)

Figure 5 The linear processor array for the I-D convolution algorithm.

where nl is the word-length of the fth input B1 and b1,v/ E {a, I}. Let G be an
output of the PE, which can be expressed in binary form as:

nout- 1

G = 2: 9i2i

i=O
(13)

with nout = llog2(max{G})J+1. The operator max denotes the maximum
value that can be assumed by its operand for all possible input combinations.
We focus on bit-level algorithms that can be expressed as nested sums:

K-l no-l nW-l-1

G= 2:{L'" 2: zk(bo,vo,· .. ,bw_l,vW_l)hk(2vo, ... ,2vW-l)} (14)
k=O vo=O VW-l=O

where ZkO is a I-bit valued function of the input bits, hkO specifies the digital
position to which any input bit is assigned, and K is an integer that denotes
the number of elementary sums that make up the algorithm.

Assume that v = (vo, ... , vw-d E V = {a, 1, ... , no -I} x {a, 1, ... , nl -I} x
... x {a,I, ... ,nw-l -I}, where V is an W-D integer space. Let

p-l

h (2VO 2Vl 2VW - 1) " 2u
k , , ... , = LJ qk,u,v

u=O

(15)

www.manaraa.com

110 CHAPTER 5

where p = Llog2(maxk{hk(2Vo , 2V1
, ••• , 2VW - 1 }})J +1 is the word-length of hk(')'

and qk,11.,v E {O, I}.

By substituting equations (13) and (15) into equation (14), the following is
obtained:

n-l p-l K-1 no-l nW-l-1

2:: 9i 2i = 2::{2:: 2:: ... 2:: qk,11.,VZk(bo,vo"'" bW-l,vw_J}211. (16)
i=O 11.=0 k=O vo=O VW-l=O

Due to the carries produced by the nested summations of equation (16), it holds
that p::; n. As can be seen from equation (16), zk(bo,vo,b1,vll'" ,bNk-l,VNk-l)
contributes to 9i, i = 0,1, ... ,p - 1 if and only if qk,i,v = 1. Therefore, the
number Qi of input bits that contribute to 9i is specified by:

{

""K-1 ""no-1 ""nl-1 ""nw_l-1
Qi = t"k=O L.."vo=O L.."vl=O ... L.."vw_l=O qk,i,V

1 The derivation of the bit-level DG

O::;i::;p-l
p::;i::;n-l

(17)

By definition, the dimension of the DG of an algorithm is identical to the
index space dimension. In particular, the bit-level algorithm of equation (14)
should be described by a W-D DG. However, the construction of the multi
dimensional DG is avoided by using combinatorial logic to compute the values
of Zk('), thus reducing the problem to multiple-operand binary addition, which
can be represented by a 2-D DG. Moreover, in this DG, the properties of the
target architecture may be embodied.

Among the variety of existing architecture styles available for the target archi
tecture (see chapter 1) for the proposed bit-level processors, the regular array
style [8, 7] is chosen, using the full adder (FA) as basic building block. The cho
sen style meets the limitations imposed by the VLSI technology and provides
solutions with suboptimal latency, but at a high throughput rate. Assume that
an FA and a link of the target architecture are mapped one-to-one to a node
and an edge of a graph, which is described by the following DREs:

{

s(i,j)
c(i,j)
x(i, j)

= s(i,j + 1) EI7 x(i,j) EI7 c(i - l,j - 1)
= maj{s(i,j + 1),x(i,j),c(i -1,j -I)}
= x(i - l,j)

(18)

where the bits s(·), x(·), and c(·) correspond to the augend, the addend, and
the carry bit, respectively. Also, EI7 is the XOR operator and maj is the majority
function. Equation (18) describes the binary addition.

www.manaraa.com

Two-level pipelined processor arrays 111

The DG will be completely specified when the exact position of the nodes and
the interconnecting edges are determined. The number of the nodes of the DG
should be specified first. Let Ai be the number of nodes contributing to the
computation of the ith output bit, 9i. Also, let {3i be the number of bits that
should be added by the Ai nodes. The {3i bits include the (}i bits specified
by equation (17), and the carry bits that result from the computation of the
(i - l)th output bit. It can be noticed that the number of carry bits coincides
with the number Ai-I. Hence:

(19)

where i = 0,1, ... ,n - 1 and A_I = O. The minimum number of nodes for
obtaining the ith output bit is:

(20)

By calculating Ai and taking into account that the DV associated to the variable
x(·) is (0, -1), the structure of the DG is entirely described by determining for
each i the smallest value of j at which a node is placed. This is accomplished
by a series of lemmas, which have been formally proven [22]. In particular, the
points of the index space where a node should be placed and the starting and
the ending nodes of local and (possibly) non-local links, assuming a minimum
graph-path requirement [14], are specified. Therefore,the derived DG is not
completely homogeneous, i.e., dependencies that are present only in certain of
its portions may exist. Consequently, more than one set of DREs are required
to describe the DG, one set per portion. Indeed, it has been proven [22] that
the DG of any bit-level algorithm given by equation (14) may be described by
seven sets of DREs for the specific target architecture.

2 Hardware realization

The last step of a graph-based methodology is the mapping of the derived
DG onto the bit-level processor. More specifically, assuming that any node
of the DG is mapped onto a PE of an FA-based array architecture, a high
throughput 2-D array is derived. Also, the DG can be projected, resulting in a
variety of linear array architectures [8]. Many alternative architectures can be
derived by taking into account various design specifications, such as hardware
complexity, latency, and throughput. The architectures of the FA-based arrays
could be systolic or wavefront arrays, with horizontal busses and/or local links.
Since additions are associative and commutative, the order in which they are

www.manaraa.com

112 CHAPTER 5

performed does not affect the final result. This leads to freedom in loading the
input bits and a potential minimization of the bus width [22, 13].

Alternative FA-based array architectures can be derived using the concept of
independent subsets of section 3.1, and a small number of additional FAs. The
major feature of these architectures is that a significant reduction in the latency
of the FA array can be achieved. For example, the following system of DREs:

{

s(i,j)
c(i, j)
x(i,j)

s(i,j + 2) EB x(i,j) EB c(i - l,j - 1)
maj {s(i,j + 2),x(i,j),c(i - l,j -In

= x(i - 2,j)
(21)

also describes binary addition and results in two independent arrays. These two
arrays may function concurrently and their outputs are added by additional
diagonally located FAs.

3 Application to I-D convolution

Continuing from the word-level architectures produced in section 3.2, we de
scribe the design of the PE that performs a multiply-accumulate (MAC) op
eration. This type of operations may be computed by an inner product step
processor (IPSP). The systematic design of an IPSP, operating in residue num
ber system (RNS) arithmetic, will be described. Some RNS basics are dis
cussed below. In RNS arithmetic [23]' any integer x is represented by an
L-tuple (Xl, X 2, ... ,XL), where Xi = (X)m;> where mi is an element of the
base {ml, m2, ... , md which contains relatively prime integers. The notation
(f)m denotes the operation f modulo m. The representation is unique for
x = 0, 1, ... , X max , where X max = nf=l mi - 1. Any computation requires L
parallel channels, performing the same operation, but each in a finite integer
ring R(mi), i = 1,2, ... , L. When the IPSP is adapted for arithmetic in R(m),
it is called IPSPm' The input/output relation of the IPSPm is described by:

(22)

Matching equation (22) to the convolution algorithm, Bo, B l , B2 , and Gout
should be defined as Bo = (y(i,j - dlj»m, Bl = (u(i,j»m, B2 = (w(i,j»m,
and Gout = (y(i,j»m. The word length of all the inputs and the output is
n = Llog2 mJ + 1. Hence, equation (22) becomes:

n-l n-l n-l
Gout = (L bo,vo 2vo + L L bl ,vo b2,Vl (2VO+V1)m)m (23)

vo=O VO=OVl=O

www.manaraa.com

Two-level pipelined processor arrays 113

Due to the outer modulo operation involved, equation (23) does not belong to
the class of bit-level algorithms described by equation (14). However, equa
tion (23) can be decomposed into two parts that can be expressed in the form
of equation (14) and one addition, leading to an architecture of three stages.
The first stage computes the sum Go:

n-l n-l n-l

Go = L bo,vo 2vo + 2:: 2:: b1 ,vo b2,Vl (2VO+V1)m
vo=O vo=o Vl=O

(24)

Generally, the word length of Go may be greater than n. The second stage
transforms Go to Gn which has a word length of n bits and (GO)m = (Gr)m.
This transformation is achieved using the following recursive formula:

nk-l nk_l-l

Gk = L 9k,i2i = L 9k_l,i(2
i)m

i=O i=O

(25)

where 1 ~ k ~ rand nk is the word length of Gk . An algorithm exists to
estimate the number of necessary recursions r [22, 13J. However, Gr may be
greater than m. Therefore, the output of the second stage should be mapped
during the third stage to its modulo m value. The function of the third stage
is described by the following equation:

G _ { Gr , Gr < m
out - Gr - m, Gr ~ m

It may be implemented by one n-bit adder and simple control logic.

(26)

Applying the methodology of section 4.1, the DG structure of the first stage as
well as that of each recursion of the second stage can be specified. Then, each
DG is mapped onto an FA-based array architecture.

The complete architecture of an IPSPm consists of n2 AND gates [4], the input
interface, and the FA-based array, as it is depicted in figure 6. The outputs
of the AND gates are driven to the input interface, which loads the Zo and Zl

bits to the proper array row with the correct sequence and at the exact time
instant. These are specified by the adopted allocation and timing schemes.
The input interface may consist of a series of parallel-to-parallel or parallel-to
serial shift registers, depending on whether a bit-parallel or bit-serial loading
scheme is adopted. The core of the cell architecture is the FA-based array
derived above. Since an IPSPm architecture includes more than one FA-based
array, unit delay cells should be inserted to preserve high pipelinability between
successive arrays [22]. The design of the FA-based array of IPSP29 is offered

www.manaraa.com

114

Bl,out

Figure 6 The general structure of the IPSP.

CHAPTER 5

B
2,out

as an example in figure 7. The architecture of IPSP29 results after one-to-one
mapping of each DG onto the FA-based array. The timing function j = const
and the bit-parallel loading scheme are employed for obtaining Gout.

5 CONCLUSION

In this chapter, a methodology for designing processor arrays, starting from
the algorithmic level and ending with the bit-level architecture of each PE of
the array, was described. The proposed methodology exploits two levels of par
allelism: the word level, which is inherent to the algorithm, and the bit level,
which exists in the execution of each word level operation. Given an algorithm
in nested-loop form, the propagation space of each variable is determined, and
an equivalent parametric URE form is obtained. The URE is mapped to the de
sired processor array after partitioning the index space to independent subsets
of variable instances. Since the partitions depend on the DVs, trade-offs with
respect to array size, interconnection pattern, efficiency, and total execution
time of the algorithm can be performed by alternative selections of the URE
parameters. The derivation of the topology of the processor array is followed
by the detailed design of each PE, using a graph-based approach. The resulting
PE is an FA-based array and includes an I/O interface. The method provides
the designer with the capability of handling critical factors of a PE, such as

www.manaraa.com

Two-level pipelined processor arrays

Sl Unit Delay
f::l FA+Unit Delay
o FA
rm Multiple Latch

Gout

Figure 7 The FA based architecture of the IPSP29.

115

www.manaraa.com

116 CHAPTER 5

area, latency, and throughput, as well as various loading, allocation, and timing
schemes.

The synthesis methodology described here is amenable to software implementa
tion. Indeed, a synthesis tool incorporating the results presented in this chapter
is already under development.

REFERENCES

[1] M. Birbas, D. Soudris, and C. Goutis. Design methodology for mapping
iterative algorithms on array architectures. Proc. IEEE Int. Symp. on Cir
cuits and Systems, Singapore, pages 3058-3061, 1991.

[2] J. Bu. Systematic design of regular VLSI processor arrays. PhD thesis,
Delft Univ. of Technology, May 1990.

[3] E. D'Hollander. Partitioning and labeling of index sets in do loops with
constant dependence vectors. Proc. IEEE Int. Conf. on Parallel Process
ing, Vol. II, pages 139-144, 1989.

[4] K. Hwang. Computer arithmetic: principles, architecture, and design. John
Wiley & Sons Inc., New York, 1979.

[5] R. Karp, R. Miller, and S. Winograd. The organization for uniform recur
rence equations. Journal of the Association for Computing Machinery, 14,
pages 563-590, 1967.

[6] H. T. Kung and M. Lam. Wafer-scale integration and two-level pipelined
implementations of systolic arrays. Journal of Parallel and Distributed
Computing, pages 32-63, 1984.

[7] H. T. Kung and C. Leiserson. Systolic arrays for VLSI. SIAM Sparse Ma
trix Proceedings, pages 245-282, Nov 1978.

[8] S. Y. Kung. VLSI Array Processors. Prentice-Hall, New Jersey, 1988.

[9] E. Kyriakis-Bitzaros and C. Goutis. An efficient decomposition technique
for mapping nested loops with constant dependencies onto regular array
processors. Journal Parallel and Distributed Computing, 16, pages 258
264,1992.

[10] L. Lamport. The parallel execution of do loops. Com. of ACM, pages 83
93, Feb 1974.

www.manaraa.com

Two-level pipelined processor arrays 117

[11] J. McCanny, J. McWhirter, and S. Kung. The use of data dependence
graphs in the design of bit-level systolic arrays. IEEE Trans. on Acoustics,
Speech, and Signal Processing, 38, pages 787-793, May 1990.

[12] D. Moldovan and J. Fortes. Partitioning and mapping algorithms into fixed
size systolic arrays. IEEE Trans. on Computers, C-35, pages 1-12,1986.

[13] V. Paliouras, D. Soudris, and T. Stouraitis. Systematic derivation of the
processing element of a systolic array based on residue number system.
Proc. IEEE Int. Symp. on Circuits and Systems, San Diego, CA, 1992.

[14] C. Papadimitriou and K. Steiglitz. Combinatorial optimization, algorithms
and complexity. Prentice Hall, New Jersey, 1982.

[15] J. Peir and R. Cytron. Minimum distance: a method for partitioning re
currences for multiprocessors. IEEE Trans. on Computers, C-38, number
8, pages 1203-1211, 1989.

[16] C. Polychronopoulos. Parallel programming and compilers. Kluwer Aca
demic Publishers, Boston, 1988.

[17] P. Quinton and V. Van Dongen. The mapping of linear recurrence equa
tions on regular arrays. Journal of VLSI Signal Processing, 1, pages 95-113,
Kluwer, Boston, 1989.

[18] S. Rajopadhye. Synthesizing systolic arrays with control signals from re
currence equations. Distributed Computing, 3, pages 88-105, 1989.

[19] S. Rao and T. Kailath. Regular iterative algorithms and their implemen
tation on processor arrays. Proc. of IEEE, 76, number 3, pages 259-269,
1988.

[20] V. Roychowdhury, S. Rao, L. Thiele, and T. Kailath. On the localization
of algorithms for VLSI processor arrays. In R. Brodersen, H. Moscovitz,
editors, VLSI Signal Processing III, pages 459-470, IEEE Press, 1988.

[21] W. Shang and J. Fortes. Independent partitioning of algorithms with uni
form dependencies. Proc. of Int. Conf. on Parallel Processing, Vol. II, pages
26-33, 1988.

[22] D. Soudris and C. Goutis. Mapping nested loops with if statements. ES
PRIT 3281 technical report, PU/M30/C2/4, L. Svensson, editor, IMEC,
Belgium, Feb 1992.

[23] F. Taylor. Residue arithmetic: a tutorial with examples. IEEE Computer
Magazine, pages 40-62, May 1984.

www.manaraa.com

118 CHAPTER 5

[24] L. Thiele. On hierarchical design of VLSI processor arrays. Proc. IEEE
Int. Symp. on Circuits and Systems, pages 2517-2520, 1988.

[25] V. Van Dongen. Quasi-regular arrays: definition and design methodology.
Proc. IEEE Int. Conf. on Systolic Arrays, 1989.

www.manaraa.com

6
REGULAR ARRAY SYNTHESIS

FOR IMAGE AND VIDEO
APPLICATIONS

Jan Rossee}1, Michael van Swaaijl
Francky Catthoor l , Hugo De Man l

Herve Le Verge2, Patrice Quinton2

lIMEC, Leuven
2IRISA-CNRS, Rennes

ABSTRACT

This chapter presents some results obtained at IMEC and IRISA in the field of
regular array synthesis for real-time image and video applications. A fully tuned
design methodology is presented that leads to an efficient array architecture for
our target domain, starting from a true behavioral description. The power of
this methodology is demonstrated on a complex real-life application: a full
video motion estimation design. The necessary array synthesis techniques are
also introduced, with emphasis on the non-conventional ones.

1 INTRODUCTION

In this chapter, we will investigate the design of regular array processor ar
chitectures (RAAs), starting from a high-level behavioral description of an
application and based on space-time transformation methods. The target ap
plication domain is that of high throughput, real-time signal and data processing
applications, such as front-end image and video processing. This includes al
gorithms exhibiting a regular data flow: sets of nested loops enclosing a body
with a limited number of local conditionals. It has to be stressed that synthesis
of an architecture for a specific real-time signal processing system means that
a specific instance of an algorithm is implemented, with a given throughput and
I/O scheme as constraints and minimal area as a goal. The main performance
indicator is, therefore, not the input-output delay (latency) but the through-

119

www.manaraa.com

120 CHAPTER 6

put to be achieved. The throughput is calculated via the block pipelining period
(BPP) [4]. The target architecture style applied is the regular array style [24].

Many design methods have been proposed to synthesize RAAs. The major
ity of these methods (see chapter 1 for an overview) are based on an affine
transformation (first described by Quinton [15] and Moldovan [12]) to map the
index space of the application description to time and processor space. The
use of such a transformation method simplifies the design task considerably
and requires only a few parameters to characterize a design completely. Unfor
tunately, most of these methods start from a relatively low level specification,
using sets of UREs (uniform recurrence equations) [3] or CUREs (conditional
uniform recurrence equations) [17] to describe an application. Moreover, es
pecially in the case of real-time signal processing applications, the resulting
architecture is usually unnecessarily fast or too slow.

Therefore, we propose a novel design script to design RAAs for real-time appli
cations. This script is described in section 2. The different steps of the design
script are detailed in sections 4 through 7. The methods of the different steps
are illustrated by applying them on a real-life application which is described in
section 3.

2 A DESIGN SCRIPT

A suitable design trajectory for regular array synthesis of real-time applications
is given in figure 1. The final result must be an optimized architecture with
a throughput matching the system specification. In order to make the task
of the designer easier, a higher-level application specification format, such as
conditional affine recurrence equations (CAREs) [25] or conditional weak single
assignment codes (CWSACs) [21]' is introduced above the CURE level. This
allows the use of important extensions such as broadcast operations, non-local
dependencies, and global operations such as ~ and TI. For this purpose, lo
calization techniques [16] have been introduced. The subsequent space-time
transformation, which performs the actual (raw) architecture design, is based
on the Quinton-Moldovan space-time mapping, with some extensions [18, 19].
As this mapping generates only architectures with specific, distinct throughput
characteristics, depending on the parameters of the design, clustering tech
niques [13, 1] (see also chapter 4) can be used to adapt the throughput of the
architecture.

www.manaraa.com

Regular array synthesis

(CWSAC descriPtion)

I

Figure 1 The proposed regular array synthesis methodology.

121

This design method, however, still does not start from true behavioral specifica
tions for realistic image and video applications. Therefore, pre-transformations
are needed before the space-time mapping and localization steps to transform
the partly irregular high level description to regular WSACs by means of re
indexing [24].

Each of these crucial steps will now be illustrated by means of a red-thread
demonstrator.

3 A REAL-LIFE VIDEO APPLICATION

An approximate but effective algorithm to compress video signals uses the idea
of motion estimation (ME) [9]. In this algorithm, the position of a small part
of the current frame in the previous image-frame is searched, i.e., one tries to
determine the motion of part of the image between consecutive frames. Only
the motion vector is then transmitted instead of all the pixels. This results in
a significant compression of the video signal.

To estimate motion, the current image frame is divided up into small blocks of
m x n pixels for which the "old" location in the previous frame is determined.
This search is restricted to an appropriate reference window of M' x N' pixels

www.manaraa.com

current image frame

122

I
I
I

I I I I I I

-----~-----~-----~-----~-----~-----~
I if+-'=m-ll
: I M' I :
I I I I

-----~--- -~ -----~- ---~
I I I I
I I Z I I
I I I I
I I I I

-----~--- -~ -----~- ---~-----
I I reference window I

:: (previous frame) :
I I

-----~-----~-----~-----~-----~-----~-----
I I I I I I
I I I I I I

I I I I
I I I I

720

CHAPTER 6

Figure 2 Notational conventions: definitions for the determination of
the motion vector between the blocks in the old and the new images.

For .all blocks (g, h):
For all positions (i,j) in search frame:

~(g, h, i,j) = Lk,IIN(8· 9 + k, 8· h + l) - 0(8· 9 + i + k, 8· h + j + l)l;
next (i,j)
~opt(g,h) = mini,j ~(g, h, i, j);

next (g, h)

Figure 3 Initial application specification.

in the previous frame with the same center as the block which is currently
considered (see figure 2). The motion vector is defined as the two-dimensional
(2-D) difference vector between the center of the current block and the center
of the m x n block in the old window that best matches the current block. So,
theoretically, a compression factor of at most m;n can be reached.

An informal application specification is given in figure 3. In these equations, the
following conventions hold: the pixels of the reference window are represented
by the variable O(k', l'} and those of the current block by the variable N(k, l).

The design of an architecture for this motion estimation application, using
the tuned design script of figure 1, is presented in the following sections. It
illustrates the individual steps for which a short summary of and a reference
to the applied synthesis techniques are supplied.

www.manaraa.com

Regular array synthesis

4 DERIVING THE INITIAL DESCRIPTION

123

The high-level description we expect as input is an extended single assignment
model. Many system designers prefer the use of procedural languages (e.g.,
FORTRAN or C) to describe their application. In order to derive the desired
single assignment model from procedural code, techniques developed at the
University of Delft (see chapter 4) and at the University of Patras (see chap
ter 5) can be used.

Alternatively, a single assignment model can be directly expressed using a func
tionallanguage. The ALPHA language [7] designed at IRISA offers a convenient
notation for the description of CAREs. An ALPHA program is a set of equa
tions involving variables defined on integral polyhedral domains. Expressions
of the language are built by combining elementary variables by means of five
constructors:

• Arithmetic component-wise operators (X + Y, X * Y, etc.).

• The dependency operator. If X is a variable, then X.I is the functional
composition of X and the affine mapping I. This operator makes it pos
sible to represent delays or spatial operations on variables.

• The restriction operator. P: X denotes the mathematical restriction of
expression X to the (polyhedral) domain P.

• The case operator. If X and Y are two expressions with disjoint (polyhe
dral) domains domX and domY, then caseX ;Yesac denotes the condi
tional expression defined as X on domX and Y on domY.

• The reduction operator. red(+, I, X) represents the 1; operator applied
to expression X, where I is an affine mapping describing the range of
summation [6].

Based on the denotational semantics of ALPHA [11], axiomatic rules are de
fined, and semantic-preserving transformations oriented towards the synthesis
of systolic arrays are built from these rules. The ALPHA DU CENTAUR program
offers an interactive environment for applying these transformations, either for
the generation of a parallel program [8] or for the synthesis of a chip [2]. A
few of these transformations will be discussed in more depth for the motion
estimator below.

www.manaraa.com

124 CHAPTER 6

5 RE-INDEXING TRANSFORMATIONS

The goal of the re-indexing transformations is to transform the potentially ir
regular control flow of the original application description into a more regular
and uniform one that can be passed to the other tools in the design trajectory.
For this purpose, all signals, except those that still have to be localized (see
section 6), are placed in a single index space so that the dependencies between
signals all lie in a pointed cone in the n-dimensional index space. This re
striction is necessary to ensure that a valid timing vector can be found during
space-time mapping.

These data- and control-flow transformations are based on an extended poly
hedral dependence graph (PDG) model [23] (see also chapter 7), in terms of
which the actual optimization problem is defined and the transformations are
performed. In this section, a short overview is given of the main concepts of
the PDG. Detailed information can be found elsewhere [23,22].

Loops and conditions form the control-flow scope of single assignment state
ments. They define regions or domains on the lattice set up by the loop itera
tors:

i=4 i=IO

(i: 1..10) ::
(j : 1..i) ::

if (i f= 5) ... ,
defines domains:

j=l
"t---t-+--+-:-

Each integer point, which corresponds to specific values for i and j, in the
domains P and Q is associated with a single operation of the assignment state
ment. Sets of operations of a single statement are in this way captured by
polytopes [14). For example, P = {(i,j) E Z 2 1i 2: j, j 2: 1, i :::; 4}. The PDG
model has two important features:

• It offers complete, exact and explicit (not just worst-case) characterization
of all individual multidimensional dependencies.

• Complexity is independent of size parameters in the original description.

www.manaraa.com

Regular array synthesis 125

One or both features are missing in other models, more oriented towards dif
ferent synthesis tasks, such as the signal flow graph (SFG) [5] (missing the first
feature), and the stream model [10] (missing the first feature, and for non
constant loop boundaries the second one as well). Details on the model and on
how to deal with singular index functions and signals with different dimensions
can be found in our previous publications [22, 23].

Control and data flow can now be effectively modeled by a placement of the
node space polytopes of the PDG in a common node space. Note that in
our model, changes of placement have explicitly measurable effects on opti
mization criteria such as the minimum required number of storage locations,
parallelism, and processor usage. As a result, it has been possible to design au
tomated steering techniques for the re-indexing transformations oriented to the
design of real-time application-specific processor arrays [24]. These optimiza
tion techniques have been implemented in the R4C4 synthesis tool at IMEC.
The impact of this important synthesis task will now be illustrated with the
red-thread example.

The behavioral description of the ME application given in figure 3 does not yet
take into account the border effects. The search window is indeed smaller for
blocks located at the borders of the image frame. The subwindows can thus be
divided in nine classes, depending on the possible horizontal or vertical motion
of the block in the reference window. A total of nine nested loop constructs
with slightly different bounds must be written to represent this. Using the PDG
model introduced above and the automated re-indexing transformations, this
apparent irregularity can be partly removed. For this purpose, the polytopes
corresponding to these nine set of loops can be brought into the same index
space, by introducing statements that are conditional in the loop indices, and
be placed closely together. The polytope enclosing the nine polytopes can then
be transformed into one set of nested loops with control equations governing the
border effects. A partial set of equations before and after the transformations
is given in figure 4. See also figure 5 for a more intuitive view of the problem.

6 LOCALIZING TRANSFORMATIONS

After re-indexing, broadcast operations and global operations such as L: are
still present in the description of figure 4. Localization techniques are needed
to localize these operations to arrive at a uniform description with only local
and constant dependencies, as required by the space-time mapping. We will

www.manaraa.com

126 CHAPTER 6

Before transformation:

/* Upper left corner block*/
llopt(I, 1) = 00

(i:O..M)::
U:O.. N)::

ll(I, h, i,i) =0
(k:l..m)::

(l:l..n)::
ll(I,I,i,i) =ll(I,I,i,i) + ...

llopt(I, 1) =min(.. .))

/* blocks of (large) central area */
(g:2..G-l)::

llopt(g, 1) =00

(i:O ..M)::
(j:-N..N)::

(h:2..H-l)::
llopt(g, h) =00

(i:-M..M)::
(j:-N..N)::

ll(I, h, i, i) =0
(k:l..m)::

(l:l..n)::
ll(g, h, i, j) = ll(g, h, i,i) + ...

llopt(g, h) =min(...)

After transformation:

(g:l..G)::
(h:l..H)::

llopt(g, h) = 00

(i:-M..M)::
(j:-N ..N)::

if (2 ~ 9 :S G - 1 V (g =1/\ i ~ 0) v (g =G /\ i ~ 0))
/\(2 ~ h ~ H - 1 v (h =1/\ j ~ 0) v (h =H /\ i ~ 0)))

{ll(g, h, i,i) = O}
(k:l..m)::

(l:l..n)::

Figure 4 Sets of loops before and after automated re-indexing.

www.manaraa.com

Regular array synthesis 127

o
0' '0

Figure 5 Re-indexing reduces complexity.

describe the basics of the localization process on the example of a simple global
operation taken from the ME application. More detailed literature about the
applied localization procedure is available [16].

1 Basic localization method

To illustrate the localization principles, a localization of the l: operator of the
ME application will be performed. The core operation in the ME application
is the calculation of the 6.(g, h, i, j) values (see figure 3). In the remainder of
this chapter, the ME application will be discussed with the outer loop (For all
blocks (g, h):) stripped off, in order not to overload notations and equations.
So, with the removal of the 9 and h indices, the core operation becomes:

6.(i,j) = LIN(k,l)-O(i+k,j+l)1
k,l

V(i,j,k,l) E D = {(i,j,k,l) 11 ::; i,j,k,l::; M,N,m,n} (1)

Consider the following general form of a global operation defined over an index
space D c zn:

V(J) = L v(I) VJ E f(D) (2)
IEf-1(J)nD

where f is an affine function zn -t zm with m < n. To localize the equations,
a technique called null-space propagation can be used in most cases. A prop
agation vector P is chosen from the intersection of the null-space of f (= Nf)
with D. Partial results of the global operation will be propagated along this
direction to the different index points where they are produced. This allows
then to generate the global result by "accumulating" (or combining) the partial
results over this propagation direction.

www.manaraa.com

128 CHAPTER 6

In general, one step of the localization "unrolls" one dimension of the null-space.
A global or broadcast operation is thereby replaced by a set of localized oper
ations and a set of new global or broadcast operations defined over a reduced
null-space.

The process must be repeated until all domain indices in the null-space of f have
been treated, resulting in a completely localized description. In some cases,
more elaborate localization techniques, such as routing and domain extensions,
will be needed to localize an equation completely [16]. Also, support is needed
to guide the choice of appropriate pipeliningjrouting vectors. This decision can
also be automated [22].

Applied to the ME example, equation (1) can be replaced by the following set
of operations where two successive localization steps have been performed (for
the L: operation over the {k, 1} domain):

!:l(i,j) = S2(i,j, m, n) (3)

S2(i,j, k, n) { S2(i,j, k - 1, n) + SI (i,j, k, n) if k > 1
(4)

SI(i,j,l,n) if k = 1

Sl(i,j, k, 1) {SI(i,j, k,l-l) + IN(...) - 0(.. ·)1 if 1> 1
(5)

IN(...) - 0(.. ·)1 if 1= 1

2 Localization in Alpha du Centaur

All the localization transformations described above have been integrated in
the ALPHA DU CENTAUR environment, developed at IRISA, so that an auto
mated transformation is possible. A complete localization of the ME appli
cation, without the outer (g, h) loop, using this interactive environment has
been performed. The initial CARE description in ALPHA notation is listed in
figure 6.

A number of transformations were applied to transform this description in
a set of CUREs. All transformations were performed interactively, which is
possible thanks to the adequate response time from the ALPHA DU CENTAUR
environment. The following transformations were applied:

• Factorization of the 2-D global operations into two 1-D global operations.

• Localization of the global operations. These first two steps, resulting in
completely localized global operations, are fully automated in ALPHA DU
CENTAUR.

www.manaraa.com

Regular army synthesis 129

system video_codec(N
o

red(min, (i,j -+) ,

red(+, (i,j,k,l-+ i,j) ,
{i,j,k,llj ~ 1;1 ~ l;k ~ l;i ~ 1j8 ~ k;8 ~ Ij16 ~ i;16 ~j}:

I N.(i, j, k, I -+ k, I) - O.(i, j, k, I -+ i + k - 1, j + I - 1) I))j

returns (Delta
let

Delta =

{k,llk ~ 1jl ~ 1j8 ~ 1;8 ~ k} of integer;
{ip,jpjip ~ 1; jp ~ 1; 23 ~ jp; 23 ~ ip}

of integer)
integer);

tel;

Figure 6 CARE description of the ME application before localization,
using ALPHA notation.

• Factorization of broadcast operations. This must be done manually.

• Localization of the broadcast operations. For this step, the user is asked
to select a pipelining vector from a set of possible alternatives. The local
ization itself is then performed automatically.

• ALPHA DU CENTAUR does not place the intermediate variables that result
from localizing global operations in the same index space. This can be done
with a re-indexing transformation after the localization step. The local
ization procedure could also be adapted so that this step is not necessary,
as in the case of the localization of broadcast operations.

The end result after applying these transformations is the set of ALPHA equa
tions listed in figure 7. Notice that this set of CUREs is only one of the many
that can be generated, based on decisions (such as selection of pipelining di
rections) taken in each of the transformation steps mentioned above.

3 A localization representation model

Localization transformations result in one application description suited for
space-time mapping. However, the optimality of the architecture may heavily
depend on how the localization was performed [20]. It is therefore necessary to
couple the localization task with the space-time assignment. Due to complexity
issues, we have found it impossible to perform the complete space-time assign
ment simultaneously with the localization task. A divide-and-conquer strategy
that performs the two tasks sequentially, while monitoring the interaction be-

www.manaraa.com

system video_codec (N
o

130

returns (Delta :

CHAPTER 6

{k,llk 2': 1;12': 1;8 2': 1;8 2': k} of integer;
{ip, jplip 2': 1j jp 2': 1; 23 2': jp; 23 2': ip}

of integer)
integer)j

var
02

82
Dl

let
Delta
D1

{i, j, k, 111 =Ij j 2': Ij i 2': Ij k 2': Ij 16 2': jj 8 2': kj 16 2': i} ,
{i,j, k,lll 2': 2j k 2': 1; 16 = j; i 2': 1;82': k; 162': i;8 2': l} ofintegerj

{i,j,k,lji =O} , {i,j,k,1116 2': iji 2': I} of integer;
{i, j, k, Ilj 2': 1j1 2': 1; k 2': Ij i 2': Ij 8 2': kj 8 2': Ij 16 2': ij 16 2': j} ,
{i,j,k,llj 2': Iji 2': Ijl = OJ k 2': Ij 162': i;8 2': k; 162': j} of integer ;

82.(-+ 16,16,8, 8)j
case

{i, j, k, Iii 2': Ij i 2': 1; I = OJ k 2': Ij 16 2': i; 8 2': k; 16 2': j} :
eltn(+).(i,j,k,I-+)j

{i,j,k,11i 2': Ijl2': Ijk 2': Iji 2': Ij8 2': kj8 2': 1;16 2': ij16 2':j}:
Dl.(i,j,k,l-+ i,j,k,l-l) + I Nl- 011;

esaCj

82 = case
{i,j,k,lli=O}: eltn(min).(i,j,k,l-+)j
{i,j, k,1116 2': iji 2': I} :

min (82.(i,j,k,l-+ i-I, 16,8,8) ,
81.(i, j, k, 1-+ i, 16, 8, 8))j

esaCj

02 = case
{i, j, k, III 2': 2; 8 = kj 16 = j; i 2': 2j 16 2': ij 8 2': I} ,
{i, j, k, III 2': 2; k 2': 1; 16 = jj 1 = ij 8 2': k; 8 2': I} ,
{i, j, k, 111 = Ij 8 = kj j 2': Ij i 2': 2j 162': i; 162': j} ,
{i,j,k,ljl =I;j 2': l;k 2': Ijl = ij8 2': k;16 2':j}:

O.(i, j, k, 1-+ i + k - 1, j +1- 1);
{i, j, k, 1112': 2j k 2': Ij 16 = jj i 2': 2j 72': k; 162': ij 82': I} ,

{i,j,k,lll = Ijj 2': l;i 2': 2;k 2': Ij16 2': jj7 2': kj16 2': i}:
02.(i, j, k, 1-+ i-I, j, k + 1, I)j

esaCj
tel;

Figure 7 Part of a description of the ME application, localized using
the ALPHA DU CENTAUR environment.

www.manaraa.com

Regular array synthesis 131

tween the tasks, is therefore preferred. Some designer feedback to come to an
optimized solution is then allowed, too.

An initial idea for a solution to the problem is first to try to find a space-time
assignment for the index space of the given problem, and then search for the
best matching localization [20]. However, the coupling between the space-time
assignment and the localization task must be tighter than a simple sequential
execution. All possible localization alternatives should be known during the
assignment phase, for two reasons:

• For some combinations of space-time assignment parameters, no localiza
tion can be found. It is best to detect this situation during the assignment
phase instead of in a global feedback loop.

• Knowing all feasible localizations during assignment allows a small and
fast optimization feedback loop in the assignment task itself. A tradeoff
between the cost of non-matched throughput or a bad localization can then
be made for a number of projection vector alternatives.

The approach we have consequently chosen is first to derive all possible local
izations. After this, a space-time assignment with the best matched throughput
is searched, together with an associated localization that minimizes the total
cost of the architecture. The problem with this approach is the large number
of localization alternatives. Fortunately, there is a lot of similarity between the
localizations. Therefore, we have developed a localization representation model
that allows one to represent all localizations for a given application description
in a non-redundant way [20]. The model consists of the following parts:

• A graph to represent all routes one can follow to arrive at a feasible local
ization.

• A set of "dictionaries" that define regions (subspaces of the index space),
dependence vectors, and operations.

www.manaraa.com

132 CHAPTER 6

Figure 8 The undecorated localization graph for the motion estimation
application.

www.manaraa.com

Regular array synthesis

Alternative

4096 localizations
1 representation model

of domains I
(4096x)19

73

of dep. vectors

(4096x)8
12

133

Table 1 Comparison of optimization overhead for considering all lo
calization alternatives.

For the ME description contained within the two inner loops of figure 3, there
are 4,096 alternative ways to localize the initial high-level description. The
number of alternatives is even larger when also considering the outer (g, h)
loop. The representation model was used to represent all localization alterna
tives. The localization graph is illustrated in figure 8. Some patterns can be
recognized here:

• The top two groups represent the localization of the broadcast of the global
variables representing the current and reference window. The form of these
groups is typical for the localization of 2-D global or broadcast operations.

• The middle group represents the localization of the summation operator.
Since this is also a 2-D operation, the localization form again looks similar.

• The bottom row of groups all represent the localization of the 2-D mini
mization operation. This graph must be repeated because the place where
the minimization occurs depends on the localization chosen for the I: op
eration.

Using this representation model results in a large reduction of the search space
if the best combination of space-time mapping and localization must be found.
This is indicated in table 1, where the number of domain definitions, depen
dence vectors and operation definitions that must be considered when iterating
over all localization alternatives is compared to what is needed when using
the novel representation model. Furthermore, the model can also be used in
synthesis environments which do not address array architectures [20].

www.manaraa.com

134 CHAPTER 6

7 SPACE-TIME MAPPING

In general, image and video processing applications lead to many nested loops
in the initial description (up to six due to the single assignment model as
in the complete ME application). Moreover, the complexity of the processing
elements can be very high, potentially including internal pipelining. These real
life requirements have necessitated extensions to the basic space-time mapping
method [12, 15].

1 Extended space-time mapping

Techniques that are tuned to throughput-based real-time processing have been
presented elsewhere [19, 18]. The following extended method is used for the
space-time mapping of the indices of the algorithmic index space D:

tl
0

11'11 1I'1n

tn -2 = [;] =Txi+y = x[:~]+ 0
1I'(n-2)1 1I'(n-2)n

'YA
X S(n-l)l S(n-l)n 0
y Snl Snn 0

The vector t is called the multidimensional time vector, and it gives a time
index at which calculation of the set of variables defined at index i will be
started. The vector p is the space vector. This vector gives the coordinates of
the processing element (PE) where the set of variables defined at index i will
be executed. Four elements are distinguished in this transformation:

• The first n - 3 rows of the transformation matrix are called the multidi
mensional scheduling vectors.

• The vector IIn - 2 is the low-level scheduling vector, corresponding to the
conventional "time" assignment [12, 15].

• The last two rows correspond to the placement vectors, which form the
placement matrix S.

• The column-vector "f contains the skewing parameter "fA. This parameter
determines how much the calculation of a variable A(i) is delayed relatively
to the scheduling determined by t. This permits dealing with potentially
complex processing elements that contain, for instance, internal pipelining.

www.manaraa.com

Regular array synthesis

for 9 = 1 to G
for h = 1 to H

for j = - N to +N
do (i, k, 1) in parallel

tl(g, h,i,j) = I:k IIN(...) - 0(.. ·)1;
tlopt(g,h,j) = mi~itl(g,h,i,j);

next (i, k, 1)
tlopt(g, h) = min(tlopt(g, h), tlopt(g, h,j))j

next j
next h

next 9

Figure 9 Mixed parallel/sequential execution of the ME application.

135

Since only two placement vectors are used, the vector p, and thus also the
architecture resulting from space-time mapping, will be two-dimensional. The
other indices of the bijective mapping are attributed to a multidimensional
time, which has to be sequentialized in order to be executable.

Multidimensional scheduling can be interpreted as follows: the first scheduling
vector III partitions the index space D into subdomains Di by using the relation
III x 1= i. Each of these subdomains can be further partitioned by the other
multidimensional scheduling vectors. This results in a set of three-dimensional
subdomains Dtt. ... ,tn_3. Each of these can be executed in parallel on a 2-D
architecture. The scheduling of the 3-D subdomains on this 2-D architecture is
given by the low-level scheduling vector Iln - 2 and the skewing parameter IA.
The subdomains are executed sequentially on the same architecture, which can
be derived from the placement vectors.

Applied to the ME application, this results in the mixed sequential/parallel
execution given in figure 9. This corresponds with the parallel evaluation of the
distance measures for all possible positions of the current block in its reference
window at a certain height. The sequential execution follows the sequential scan
of video images: first the top row of blocks is considered and, within this row,
the blocks are evaluated from left to right. For a block at position (g, h), the
distance measure for all motion vectors with the same vertical displacement are
evaluated in parallel. The set of vectors with the smallest vertical displacement
is executed first, whereas the largest vertical displacement is considered last.

www.manaraa.com

136 CHAPTER 6

Using the linear transformation approach [12] results in pure systolic arrays:
all operations of one index point (i.e., the kernel) are executed in one and the
same clock cycle on their own piece of hardware. For algorithms with a complex
kernel, this leads to large PEs with long critical paths. In that case, PEs must be
pipelined and some hardware units may be shared for similar operations. This
introduces the need to order/schedule the operations of one index point. For
this, an affine timing function, using an operation dependent skewing factor "'(A,

is necessary. Affine scheduling also becomes necessary when (limited) rippled
interconnections must be allowed, and when dependence loops between index
points in the dependence graph must be broken. It has also been shown [18]
how local PE-scheduling and the global time-ordering of index points can be
separated, allowing the use of better matched cost-functions and resulting in
smaller optimization problems.

2 Optimization criteria

The ultimate goal of the overall space-time mapping step is to find a transfor
mation matrix t and a set of skewing parameters "'(A that result in an optimized
design. The optimization criteria include:

• Matched throughput. If possible, the mapping should match the requested
throughput, since applying clustering techniques to reach matching will
result in area overhead.

• Optimized PE design. The optimization of the PE design depends on
the clock frequency needed for matched throughput, the level of hardware
multiplexing used, the number of pipeline registers (as few as possible, as
many as needed).

• Minimal I/O buffering. Arrays of I/O data should be spread in time as
much as possible to reduce buffer cost. Also, the "natural" ordering of
data-streams (as, e.g., the scanning order of video-images) should be fol
lowed as closely as possible.

• Efficiently used hardware. Hardware that is used only during part of the
cycles should be avoided. If all PEs are used inefficiently, passive clus
tering can be applied, or if only part of the PEs are used inefficiently,
selective clustering can be used. But all the clustering methods (see be
low) introduce overhead, so they should be avoided as much as possible
by first choosing an optimal combination of localization and space-time
transformation matrix.

www.manaraa.com

Regular array synthesis 137

• I/O and control signals should only be applied to PEs at the border of
the architecture to avoid routing of these signals to the internals of the
architecture.

• The load of the PEs should be balanced, i.e., ideally all PEs should perform
the same amount of work for one pass of the algorithm.

These principles have been formalized in a method that has been applied to the
ME demonstrator [19]. The transformation matrix at the left of equation (6)
was found to be optimal.

1 1
1 0
o 0

(6)

In this case, it was possible to "linearize" the multidimensional timing in a
simple way, and only internal pipelining is necessary within the PE with the
appropriate skewing parameters 'YA [19).

The resulting array architecture is shown in figure 10. The PE design is shown
in figure 11. Note that this PE-design is the maximal one, performing all
operations occurring in the complete application description. It is only needed
in the cell at the lower right corner in figure 10. The PEs in the lowest row of
cells in the array require only the first comparator block, whereas all the other
rows do not require any comparators. Hence, most cells use only the first two
or three stages of this pipelined data-path.

The optimization goals were reached to a large extent. Only 248 bytes of buffer
memory outside of the array are needed, all PEs are active at 100% of all
cycles, and the architecture has matched throughput. Communication inside
the array is also simple, and no control or I/O is needed for PEs not located
at the borders. This fully optimized result has been feasible by adopting the
tuned methodology proposed in section 2 and with the help of the synthesis
techniques discussed in the previous sections.

www.manaraa.com

138

c

CHAPTER 6

Figure 10 Final architecture for the motion estimation algorithm.

1=1 1=2 1=3 1=4 1=5

Bollom row PE's

Bouom rj K'hl comer pE

Figure 11 The PE architecture for the ME example.

www.manaraa.com

Regular army synthesis

3 Comparison with related work in other chapters

139

The optimization strategy of the array design method developed at ENSL (see
chapter 3) is latency-driven. The approach to first find the schedule with the
minimal latency (which is largely dependent on the longest dependence path in
the algorithm), and then the smallest architecture compatible with this sched
ule, would possibly result in a smaller architecture than the one presented here.
The throughput, as defined by the block pipelining period, of such an archi
tecture would be insufficient, however, because that criterion is not explicitly
used in this complementary methodology.

The extensions presented in chapter 3 to allow (partial) broadcasting are, how
ever, compatible with the approach presented here and could be used to reduce
the number of pipelining registers of the architecture.

The overall design method developed at University of Patras (see chapter 5) is
also not directly oriented to our particular application domain. This alternative
method exploits the existence of independent subsets of variable instances, but
these are not present in many video processing kernels, so no gains are possible
here. Also, since the approach is partly latency-driven, an architecture with
less than 100% PE load would be the result. However, the extension to bit
level pipelining can be integrated with the approach presented here to arrive
at architectures with extremely high clock frequencies. This was not required
for the ME demonstrator.

4 Clustering transformations

The last step in the methodology of section 2 involves array clustering tech
niques to map the architecture produced after space/time transformations on
a smaller fixed size array, as described in chapters 3 and 4 [13, 1]. For the ME
application, this clustering stage is not needed since the carefully chosen trans
formation matrix results in an architecture with already matched throughput
and size. The PE usage is 100%, so passive clustering techniques to improve
PE usage are also superfluous.

www.manaraa.com

140 CHAPTER 6

It must be stressed that, in general, these transformations are a necessity for
many image and video algorithms. Indeed, the size parameters of the archi
tecture are a function of the parameters of the application. The large image
size parameters may therefore result in very large architectures. Given the
large number of PEs, such architectures will be much too fast in most cases,
necessitating the use of clustering techniques to adapt the throughput of the
architecture.

8 CONCLUSION

It has been demonstrated that the proposed design script for regular array syn
thesis leads to efficiently designed architectures. The script has been developed
in the context of the CATHEDRAL project. The re-indexing and localization
tools, developed respectively at IMEC and IRISA, can be used to allow a higher
input behavioral description of an application. The transformations provided
by these tools can also be useful in other architecture synthesis areas.

The example design of a motion estimation application using the design script
resulted in an architecture that can be compared with even the best manual
designs. The careful selection of the transformation matrix produced an archi
tecture with optimal I/O and control flow. Only control logic and I/O at the
borders is needed, and the interface buffer sizes needed are very small. This
shows that the proposed methodology and tools can indeed be used for complex
real-life examples, with optimal results.

REFERENCES

[1] J. Bu and E. Deprettere. A constructive procedure for processor clustering
and array optimization. Proc. International Symposium on Circuits and
Systems, pages 248-251, 1991.

[2] C. Dezan, E. Gautrin, H. Le Verge, P. Quinton, and Y. Saouter. Syn
thesis of systolic arrays by equation transformations. Proc. of the IEEE
International Conference on Application Specific Array Processors. IEEE
Computer Society Press, Sep 1991.

[3] R. M. Karp, R. E. Miller, and S. Winograd. The organization of compu
tations for uniform recurrence equations. Journal of the Association for
Computing Machinery, 14, number 3, pages 563-590, Jul 1967.

[4] S. Y. Kung. Systolic array processors: performance analysis and design
optimization, chapter 4.4, pages 226-248. Prentice Hall, 1988.

www.manaraa.com

Regular army synthesis 141

[5J D. Lanneer, G. Goossens, F. Catthoor, M. Pauwels, and H. De Man. An
object-oriented framework supporting the full high-level synthesis trajec
tory. Proc. 10th Intnl. Symp. Compo Hardw. Descr. Lang., CHDL-91,
Marseille, France, pages 281-300, Apr 1991.

[6J H. Le Verge. Reduction operators in ALPHA. Parle '92, Paris, Jun 1992.

[7) H. Le Verge, C. Mauras, and P. Quinton. The ALPHA language and its
use for the design of systolic arrays. Journal of VLSI Signal Processing, 3,
pages 173-182, 1991.

[8) H. Le Verge and P. Quinton. Derivation of regular parallel algorithms
with the ALPHA language. In J. P. Banatre and D. Le Metayer, editors,
Research Direction in High-Level Parallel Programming Languages, pages
298-308. Springer-Verlag, 1992.

[9J C. Lin and S. Kwatra. An adaptive algorithm for motion compensated
color image coding. IEEE Globecom, 1984.

[lOJ P. Lippens, J. van Meerbergen, A. van der Werf, W. Verhaegh, B. Mc
Sweeney, J. Huisken, and O. McArdle. PHIDEO: a silicon compiler for
high speed algorithms. Proc. 2nd ACM/IEEE Europ. Design Automation
Conf., Amsterdam, The Netherlands, pages 436-441, Feb 1991.

[11) C. Mauras. ALPHA: un langage equationnel pour la conception et la pro
grammation d'architectures paralleles synchrones. These de l'Universite
de Rennes 1, IFSIC, Dec 1989.

[12) D. Moldovan. Advis: a software package for the design of systolic arrays.
Proc. IEEE Int. Conf. on Computer Design, Port Chester NY, pages 158
164, Oct 1984.

[13) H. Nelis and E. Deprettere. Automatic design and partitioning of sys
tolic/wavefront arrays for VLSI. Circuits, Systems and Signal Processing,
7, number 2, pages 235-252, 1988.

[14J G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimiza
tion. John Wiley & Sons, New York, 1988.

[15J P. Quinton. Automatic synthesis of systolic arrays from recurrent uniform
equations. Proc. 11th Int. Symp. Computer Architecture, Ann Arbor, pages
208-214, Jun 1984.

[16) P. Quinton and V. van Dongen. The mapping oflinear recurrence equations
on regular arrays. Journal of VLSI Signal Processing, 1, pages 95-113,
1989.

www.manaraa.com

142 CHAPTER 6

[17] S. Rajopadhye. Synthesis, verification ar>d optimization of systolic arrays.
PhD thesis, The University of Utah, Dept. of Computer Science, Dec 1986.

[18] J. Rosseel, F. Catthoor, and H. De Man. Extensions to linear mapping
for regular arrays with complex processing elements. Proc. of the IEEE
International Conference on Application Specific Array Processors, pages
156-167. IEEE Computer Society Press, 1990.

[19] J. Rosseel, F. Catthoor, and H. De Man. The systematic design of a motion
estimation array architecture. Proc. of the IEEE International Conference
on Application Specific Array Processors, pages 40-54. IEEE Computer
Society Press, 1991.

[20] J. Rosseel, F. Catthoor, and H. De Man. The exploitation of global op
erations in affine space-time mapping. In Kung Yao et al., editors, VLSI
Signal Processing V, pages 309-318, IEEE Press, 1992.

[21] V. Roychowdhury, S. Rao, L. Thiele, and T. Kailath. On the localization
of algorithms for VLSI processor arrays. In R. W. Brodersen et al., editors,
VLSI Signal Processing III, pages 459-470, IEEE Press, 1988.

[22] M. van Swaaij. Data flow geometry: exploiting regularity in system-level
synthesis. PhD thesis, K. U. Leuven, Belgium, Dec 1992.

[23] M. van Swaaij, F. Franssen, F. Catthoor, and H. De Man. Modeling data
flow and control flow for DSP system synthesis. Proc. of the European
Design Automation Conference, pages 8-13, 1992.

[24] M. van Swaaij, J. Rosseel, F. Catthoor, and H. De Man. Synthesis of ASIC
regular arrays for real-time image processing systems. In E. Deprettere
et al., editors, Algorithms and Parallel VLSI Architectures, Vol. B, pages
329-342, Elsevier Science, 1991.

[25] Y. Yaacoby and P. Cappello. Scheduling a system of nonsingular affine
recurrence equations onto a Eystolic array. Journal of VLSI Signal Pro
cessing, 1, pages 115-125,1989.

www.manaraa.com

7
MEMORY AND DATA-PATH

MAPPING FOR IMAGE AND
VIDEO APPLICATIONS

Werner Geurts1 , Frank Franssen1

Michael van Swaaijl, Francky Catthoor l

Hugo De Manl , Marc Moonen2

1[MEG, Leuven
2 ESAT, Univ. of Leuven

ABSTRACT

In this chapter, we will present a high-level synthesis methodology that is
particularly suited for irregular high-throughput subsystems realized on an
application-specific architecture. This CATHEDRAL-3 methodology is targeted
to real-time signal processing applications with a low potential for time multi
plexing, as occurring, for example, in image and video applications. The most
crucial steps in this methodology are supported by appropriate synthesis tech
niques embedded in prototype tools. The emphasis lies on high-level synthesis
supporting the dominant design cost factors, i.e., an area-efficient memory or
ganization and a customized data-path configuration, both within the stringent
throughput requirements. The power of the approach will be illustrated with
realistic demonstrators.

1 INTRODUCTION

The CATHEDRAL-3 architecture synthesis methodology that we present is tar
geted to real-time signal- and data-processing applications that are data-flow
dominated and have a low potential for time multiplexing [18, 8]. It is particu
larly suited for the important domain of irregular high throughput applications,
which must be mapped on application-specific architectures due to throughput
bottlenecks or due to severe restrictions on area or power. Some examples of
target applications are medium-level and front-end image and video processing
modules, front-end audio, and user-end telecom [1].

143

www.manaraa.com

144 CHAPTER 7

This target application domain features a number of important characteristics
which are heavily exploited in our target architecture style and our synthesis
approach [1, 18, 8]:

• A regular computation-intensive signal flow-as occurs in algebraic analy
sis, filtering, or format conversion-is combined with nested branches and
multiple data-dependent loops. This explicit irregularity complicates not
only the controller synthesis but also other synthesis tasks, like schedul
ing and data-path allocation. These tasks need to deal with control-flow
hierarchy explicitly, which is an important aspect of our approach (see
section 3).

• Multidimensional signals of a substantial size (index ranges up to a few
thousand) and dimensionality (up to four or five nested indices) are present
within the loops. These need to be stored in bulk memories or in medium
size distributed memories, resulting in a severe memory management prob
lem. Therefore, optimization of the memory size and the number of access
ports, and especially transforming the control flow of the algorithm to al
Iowa significant improvement of the memory-related cost, are important
tasks in our synthesis script (see section 2). Actually, this design phase is
even performed before the data-path mapping is started.

• The operations in the high-level specification are not only restricted to
linear signal processing like multiply-accumulate but include also nonlin
ear operations. Moreover, the complexity of the hardware on which these
operations need to be mapped can differ substantially. For instance, a
multiplier will, even when it is pipelined, be slower and much larger than
a hard-wired shifter. This issue leads to an additional complexity in mod
ule or operator allocation and selection (see section 3). Indeed, in order
to maximally exploit a unique clock period TOL for our synchronous tar
get architecture style, operators will need to be chained within a pipeline
section, resulting in complex customized data-paths (see figure 7). These
are commonly called application-specific units or ASUs. The complexity of
these is usually larger than the highly multiplexed data-paths in chapters 8
and 9 due to the difference in target domain. High-level operations (such
as division and floating-point multiplication) will need to be expanded into
lower level operations that are better matched to these ASUs.

• The number of operations that have to be performed within a time frame
is much larger than the achievable amount of operations per clock cycle
on a single resource. The former may range from hundreds to thousands
of millions of operations per second (MOPS), while the latter might be on

www.manaraa.com

High-throughput memory and data-path mapping 145

the order of 20 MOPS. This will require the allocation of a large number
of parallel resources of different types. Moreover, the cost of the inter
connections that are required to let these resources work in parallel is an
important optimization criterion.

• The maximum hardware-sharing factor HSF = TEvAL/TcL is typically
in the range of 1-20. Here, TEVAL is the amount of time, specified by
the designer, that is available for the evaluation of one instance of the
algorithm. For signal processing applications with a fixed rate and single
input and output signals, TEVAL is usually the sample period. This HSF
expresses how many times any particular resource can be re-used or shared
during the evaluation of one instance of the algorithm. Since the HSF is
low but usually larger than 1, hardware should be partly shared, while still
incorporating the stringent timing bottlenecks present in the application.
As a result, the operator or data-path assignment problem is a crucial step
during data-path-related synthesis (see section 3). Moreover, scheduling
becomes extremely constrained and needs to deal with heavily pipelined
operators or data-paths.

The traditional approach [13] toward synthesis for high throughput applications
is to perform pipelined scheduling first, minimizing the number of functional
units [21, 7, ll}. This step is followed by binding [7, 22), which aims to minimize
the functional unit, register, and interconnect cost. The result of this so-called
scheduling-first approach is that a large number of operations are distributed
over many operators and it becomes very difficult to route the intermediate
variables from their source operator to the destinations [18}. This is reflected in
the large number of multiplexers and busses that are required. The irregularity
introduced by the scheduling also results in an unacceptable growth in the size
of the control unit.

We have introduced a synthesis methodology for data-path mapping that pre
serves the inherent structure of the algorithm [18J. This permits mapping highly
resembling clusters of operations onto the same complex data-path. More de
tails can be found in section 3, where our approach will be illustrated with a typ
ical realistic demonstrator. There, a comparison will be made with some other
recent approaches, HYPER [25] and PHIDEO [9], which are also dealing with
hierarchically organized, high-throughput applications. Very few approaches
in literature address the crucial memory management issues. In contrast, our
methodology already provides an effective solution for several key aspects of this
important problem. The results for a realistic demonstrator will be presented
in section 2.

www.manaraa.com

146 CHAPTER 7

The synthesis objective that will be used throughout this chapter is the mini
mization of the total area consumed by all resources, i.e., memories, operators,
and interconnect, under a user-specified throughput constraint (e.g., the sample
rate). This is compatible with the requirements for real-time signal processing
systems that are targeted to customized architectures but not fully power
dominated. Extensions to other optimization objectives, based on cost factors
like low power, are feasible but will not be discussed here.

2 HIGH-LEVEL MEMORY MANAGEMENT

In most real-time signal- and data-processing systems, large quantities of data
are processed. These data are most often specified as multidimensional (M-D)
signals, i.e., arrays with one to four dimensions. Due to the applicative nature
of our specification language, we frequently obtain intermediate signals with
even up to six dimensions. Processing these large M-D signals in real time not
only poses computational problems; their main effect lies in the required storage
capacity and the access bottle-neck they cause between large-scale memories
and the arithmetic processing in data-paths [1, 9, 33]. Examples of such sys
tems are abundant in image, video, speech and radar processing, measurement
systems, graphics, and in automotive and audio processing. The M-D signals
are referenced by index expressions which may not be assumed to be linear and
manifest; nonlinear and even data-dependent expressions occur.

This section provides an overview of the work performed on high-level synthesis
methods intended for supporting the design decisions on M-D signal storage
and access. The proposed synthesis script, i.e., the sequence of subtasks plus
their optimization objective, will be provided together with an illustration of
the power of this novel approach by means of a realistic demonstrator: an
auto-correlation algorithm as, for example, needed in a CD audio interpolator
[33].

1 The auto-correlation test-vehicle

The algorithm used in the auto-correlation application is given in SILAGE [6]
notation in figure 1. The node numbers in the SILAGE code are used as la
bels for the corresponding recurrence equations. They are used as a reference
throughout this section. Essentially, an input signal stream in [i] is broken
up into consecutive sets of N + P + 1 signal elements. These are preprocessed
with a simple scalar function finO, resulting in the new set sCi] (node 1).

www.manaraa.com

High-throughput memory and data-path mapping 147

func main (in : INT_S[NplusP]) : INT_WM[] =
begin
(i: 0 .. NminlplusP) :: sri) = fin (in[i)); 1* 1 *1
(i : 0 .. P) :: r[i][O] = INT_AC(O); 1* 2 *1
(j : 0 .. Nminl) ::

begin
a[j] =fl (s[j]); 1* 3 *1
(k : 0 •• P) ::

begin
b[k][j] =fl (s[k+j]); 1* 4 *1
r[k] [j+l] = r[k] [j] + INT_AC (a[j] * b[k] [j]); 1* 5 *1
end;

end;
isclO =f3 (r[O][N]) - 15;
help =f2 (r[O][N] • -isclO);
return[O] = f4 (MAXM • help);
(z: 1 .. P) ..

begin
return[z] = f5 (r[z] [N] • -isclO); 1* 6 */
end;

end;

Figure 1 Initial SILAGE description of auto-correlation algorithm.

The description used here also includes the casting function f1 0 on the input
samples. Then, each subset of N elements (produced with the k iterator in
node 4) is compared to the subset of the first N elements (produced in node
3). This comparison uses an accumulated multiplication of the two sets (node
5) for each value of the iterator k, resulting in the auto-correlation coefficients
r [] []. In the CD interpolation application, these coefficients are considered
as Toeplitz matrix elements after some further postprocessing embedded in the
functions f 20 -f50 .

This description results in two sets of signal broadcast operations, labeled as
node 4 and node 5. These in particular will result in a potentially large number
of storage locations during memory management.

Note that statements defining a single signal instance-like isc10, help, and
return [O]-and simple assignments of one M-D signal to another-like a[i]
= b[i]-are not considered as relevant M-D signal definitions at this stage.
Hence, they are pruned from further analysis to decrease the complexity [31].
That is also why the functions f1 O-f5 0 have been introduced in the descrip
tion.

www.manaraa.com

148 CHAPTER 7

The parameter set used in the demonstrator corresponds to N = 512 input
samples and 51 Toeplitz coefficients, Le., a maximal shift of P = 50 relative to
the input samples.

2 Motivation for a novel model compared to

state-of-the-art

A primary task in high-level architecture synthesis is the extraction of the data
flow from a given algorithm description. The term data flow is defined here as
the combination of operations and dependencies between them that define the
algorithm. In contrast, control flow is then defined as a (partial) ordering of
computations meeting the restrictions of their dependencies. The control flow
is usually specified by introducing loops and function hierarchy.

In order to arrive at efficient synthesis results, it has been recognized that
transformations on algorithm specifications are crucial. Until now, this issue
has been investigated mainly for data flow transformations on scalar processing,
as in digital filters [20, 25]. Also, loop transformations have been studied in
the context of software optimizing parallel compilers [10, 17, 19, 23]. We claim
that transformations are even more crucial for the control flow in the presence
of M-D signals. Indeed, studies on the effect of memory organization and the
way M-D signals are stored in memory [33, 9] have shown that, for instance,
loop transformations have effects that cause differences in realization cost of
several orders of magnitude, rather than on the order of a few dozen percent, as
many other types of optimizations in the remainder of the synthesis trajectory.
Hence, in order to allow for maximal flexibility in control flow optimization,
none of the possible control flows should be excluded in advance from the search
space. This is, of course, with exception of those incoherent with a given data
flow or those explicitly marked as undesirable by the designer. In other words,
the syntactical structure of an algorithm specification should not be used to
limit the set of possible control flows in the realization, as generally happens
in conventional approaches.

Formalization of optimization tasks in the synthesis process can only be done
when data flow and control flow are modeled properly and rigorously. Formal
ization is necessary to allow globally optimal design decisions, and also to be
more independent from the wayan algorithm has been specified. It has to be
stressed that when dealing with M-D signals, it is in most practical cases not
acceptable to "unroll" the nested loops because this leads to a huge number of
scalars that cannot be handled in a realistic way. This means that scalar meth-

www.manaraa.com

High-throughput memory and data-path mapping 149

ods based on signal flow graphs (SFGs) as used in conventional synthesis [13J
are not sufficient. Moreover, it is in general also insufficient to use enumeration
based symbolic analysis [34, 28]' since in many applications-for example, in
image and video processing applications-complexity becomes too high. For
the irregular, high throughput target domain that we envision, much of the
exploration freedom is also neglected when the ordering within the M-D signal
constructs as specified by the designer is retained [9J. In general, all signal
dependencies are indeed relevant to steer the required control flow transforma
tions with a sufficient quality of the result, especially when subsets of signals
are defined or consumed in different ways. Some nonsymbolic approaches that
have been used for data flow analysis, such as solving an integer linear pro
gramming (ILP) formulation [5J, also do not provide a sufficient modeling for
this purpose [2J. For linear functions, the problem has been addressed in the
field of regular array synthesis [24J. This work has been used as a basis here,
but it is in itself not sufficient to deal with the memory-related aspects for
irregular applications. Therefore, in the context of ASCIS and NANA, an ex
tended polyhedral-based model has been presented that meets all the necessary
requirements [29, 32, 2J.

3 The principles of the model

A linear submodel has originally emerged as an efficient solution to extract hid
den regularity in the context of regular array synthesis [29J, as already described
in section 5 of chapter 6. Extensions to describe nonlinear and data dependent
M-D indexing behavior have been proposed, too [2J. The requirement for this
added functionality is frequently encountered in, for example, image processing
applications, due to the direct application of modulo functions on affine iterator
(index) functions, or indirectly by the presence of conditional signal definitions
that are used as indexing signals [2, 6J.

In the proposed model, signals are defined in an M-D index space by means
of index boundaries based on polytopes, i.e., convex M-D regions bounded by
inequalities [16J. This has already been illustrated for a single M-D signal
definition (by means of a recurrence equation) in chapter 6. The scope of the
operation involved is defined as the region or domain on the lattice, set up by
loop iterators and bounded by the iterator ranges, also called the node space.
In a similar way, polytopes can be related to the signals defined by and used
by operations, called definition and operand spaces. The relations between the
M-D signals can then be described according to a dependence graph between the
polytopes (or polyhedrals in general). This leads to the polyhedral dependence
graph (PDG) concept, in which nodes represent the scope of statements (node

www.manaraa.com

150 CHAPTER 7

511x51

2 6 f(x) = [~ ~] X + [~1]
51 50

0 1 0
512x51 0 -1 -511

Pa 1 0 x~ 0
4 -1 0 50

0 1 0

Pb
0 -1

x~
-512

562
1 0 0

-1 0 50

Figure 2 PDG of auto-correlation data flow and the intradependency
relation for node 5.

spaces) and edges represent dependency relations given by M-D affine functions
f(x) = Ax + b [31].

An example of the relation between the different node spaces is now provided
using our auto-correlation demonstrator application. The PDG for this algo
rithm is depicted in figure 2. The affine functions to be annotated to the edges
are the result of mapping node spaces on their definition Pa and operand spaces
Pb (see also figure 3 for the graphical presentation of the corresponding poly
topes). Each of the polytopes, within its space, can be mathematically denoted
by a set of inequalities ex ~ c. An example is provided for the intradependency
from node 5 to itself.

Because the optimization of control flow for minimizing memory storage (see
below) is based on dependency costs between the different node spaces, the
exact dependency relations are relevant information. For example, the exact
number of dependencies that exist between the operations of node space 5 is
determined by computing the intersection of both inequality sets belonging to
polytopes Pa and Pb . For node 5, this results in the inequality set of Pa, which
means that 511 x 51 intradependencies are present. This information and the
corresponding affine function I(x) for node 5 is depicted in figure 2. To each
edge of the PDG in figure 2, the number of dependencies is annotated.

www.manaraa.com

High-throughput memory and data-path mapping 151

In summary, the importance of using polytopes to indicate sets of lattice points
is that this model is precise, it is concise, and it allows for easy dependency
analysis without symbolic simulation. FUrthermore, many powerful mathemat
ical methods and techniques are available for handling polytopes [16, 26]. These
methods and techniques can be readily used in the analysis and optimization
problems.

4 Memory-related algorithm optimization

One of the key stages in organizing the memories is the selection of the initial
control flow, in particular the loop organization and the indexing equations.
Once this choice has been fixed, a procedural interpretation of the control flow
can be used to derive an initial access and storage scheme. From the access
scheme, an optimized number of memories and memory ports can be derived:
for example, by a stream-based technique [9]. For this given memory allocation,
the in-place storage for the M-D signals can be decided whenever their life
times are (partially) nonoverlapping. Initial research has resulted in techniques
that can deal with M-D signals [34, 28]. Other recent results are described in
chapter 8. Finally, also the address-related issues can be dealt with [9, 28].
However, it has been shown that the initial control flow specification has a very
pronounced effect on the eventual results of the other memory management
stages [34, 31J. Typically, the control flow selection is now performed in an
ad-hoc manner by the system designer, with little or no formal foundation or
feedback on the effects. Therefore, synthesis techniques to support the designer
with this decision are crucial but were totally missing until now.

We have derived such a technique founded on the extended PDG model. In this
PDG, control flow can simply be expressed by a placement of the polytopes in
a common Euclidian space, together with an ordering vector defined over this
space [29, 30J, as already described in chapter 6 for array synthesis. Techniques
to steer this placement and ordering with cost functions directly associated
with the crucial memory-related costs of access bandwidth and storage location
count have been proposed [31J. Note that in our PDG control flow model,
changes of a placement and ordering vector have explicitly measurable effects on
optimization criteria such as the minimum required number of storage locations
(the maximum number of dependencies cut by the hyperplane perpendicular
to the ordering vector) and access bandwidth or parallelism (the operations on
the same hyperplane). These types of criteria are not explicitly measurable in
SFG- or DFG-type models [13J. Addressing cost is also implicitly incorporated
in our model, since the affine index functions for the eventual M-D signals result

www.manaraa.com

152 CHAPTER 7

Figure 3 Common node space topology after PDG placement for the
auto-correlation with N =512 and P =50.

in linear address equations which can be efficiently realized in an incremental
way with simple offset-based additions on a modulo basis.

The impact on storage requirements for the auto-correlation application will
now be studied as an illustration.

PDG placement

Given the algorithm data flow structure of figure 1, modeled by the PDG
model, the definition of a control flow is performed in two phases. First, the
placement of individual domains is done in a three-dimensional common node
space. This placement step is performed incrementally, steered by accurate
mixed ILP optimization techniques [31]. The result is depicted in figure 3.
The extreme points of node spaces 1 and 3 are located at [0,0,2] and [561,0,2]
and at [0,-1,0] and [511,-1,0], respectively. This means that both spaces are
nicely aligned to each other and connected by 512 dependencies with direction
[0,-1,-2]. The extreme points of node space 4 are located at [0,0,1], [511,50,1],
[511,0,1] and [0,50,1].

Arcs in figure 2 represent the dependency directions in and between the different
node spaces. For instance, the arcs running over node space 5 represent all

www.manaraa.com

High-throughput memory and data-path mapping

(i -2 .. 562) ::
(j -1.. 561) ::
(k -50 .. 1) ::
begin
return_29[-j-k+511] [i-j+k-l] [-i-k+512] =

if«j==511) t (2*i==j-2*k+513) t (j<=-k+510) t (j>=-k+461»
-> f2(r_56[-j-k+511] [512] [O])fi;

b_52[-k][j][-i+j-k-1] =
if«i==j-k-1) t (j>=O) t (j<=511) t (k<=O»
-> fl(s_58[j-k] [0] [O])fi;

r_56[-k] [j+1] [-i+j-k] =
if«i==j-k) t (j>=O) t (j<=511) t (k<=O»
-> add(r_56 [-k] [j] [0] ,a_54[j] [0] [0] ,b_52[-k] [j] [O])fi;

s_58[j][-k][-i+j-k-2] =
if«i==j-2*k-2) t (i==j-2) t (j>=O»
-> finOfi;

r_56[-j-k-l] [-j-1] [-i-k-1] =
if«j==-1) t (2*i==j-2*k-1) t (j<=-k-1) t (j>=-k-51»
-> nilOfi;

a_54[j] [-k+1] [-i+j-k] =
if«i==j-2*k+1) t (i==j-1) t (j>=O) t (j<=511»
-> fl(s_58 [j][O][O])fi;

end;

Figure 4 Re-indexed auto-correlation code after placement and order
ing.

153

broadcast dependencies over a single column in the j direction. The solution
provided here is heavily optimized. As an example, look at the placement of
node space 6, which has extreme points at [511,50,-1) and [511,1,-1). This
is optimal in terms of dependency length cost (related to storage locations)
toward the other polytopes. Because a similar dependency direction is present
between the spaces of nodes 4 and 5, this solution is also not unnecessarily
constraining the search space for an ordering vector that is determined next.

Selecting an ordering vector

Given this placement, an optimized control flow can now be expressed by ap
plying a single affine transformation on the complete common node space in
such a way that the new base vectors (iterators) indicate the sequence of loop
ordering [31).

The placed and ordered result can be represented by a completely re-indexed
version of the initial description in figure 1. The new (incomplete) SILAGE code
is listed in figure 4.

www.manaraa.com

154 CHAPTER 7

The result of the ordering transformation on the common node space is indi
cated by three vectors at the bottom of figure 3. The three vectors indicate the
order in which the operations in the common node space are to be computed.
Originally, the inner k-iterator is the fastest changing iterator and the outer
i-iterator the slowest one. In the optimized result, the fastest movement is
along the [50,-50,-1] direction, followed by the [0,-1,-2] and [1,0,0] directions.
This solution corresponds to a diagonal computation of the r [] [] instances.

Note that although at first sight, the final code contains a large number of con
ditions, which may imply a complex control structure, most complex conditions
can be reduced to simpler ones by a postprocessing stage. This is equivalent
to finding a polytope representation with a minimal set of equations [12].

Effect on memory cost

We will now illustrate the effect of the re-ordering on M-D signal storage re
quirements. The requirements can be computed per signal by using the window
calculation method [28).

The control flow, defined by a procedural interpretation of the initial SILAGE

description of figure 1, results in an inefficient solution. Indeed, the inner loop
of the double nested loop construct is the fastest one executed. This type
of control flow definition corresponds to a column-wise ordering of b [] [] and
r [] [] instance computations. In terms of storage requirements, this means
that all 562 input signal instances of s [] are read in before they are consumed.
The same is true for alISO instances of r [0] [], which are produced before one
instance is consumed. Furthermore, P intermediate signals r [] [] have to be
alive in parallel. The same is true for the column of return[] values.

This situation is improved significantly in the re-ordered description of figure 4.
As a result of the diagonal ordering, the a [] instances have to be stored for the
computation of P(P/2) r [] [] instances. Because the a [] instances are broad
cast, the maximal number of instances of a[] to be stored is P. The instances
of b [] [] are broadcast over the diagonal, hence a single instance of b [] [] is
alive at any point of the ordering. The maximal number of simultaneously
available instances of s [] is also 1, because the production of the broadcast
a [] and b [] [] instances requires the same s [] instance. Hence, at most P
intermediate signals r [] [] have to be alive in parallel. Both the initial r [] [0]
instances and the return [] instances are required one at a time. These results
are collected in table 1.

www.manaraa.com

High-throughput memory and data-path mapping 155

I Signal Size I Initial I Optimized I
s [] 562 562 1
return[] 51 1 1
b[] [] 26112 25600 1
a[] 512 1 51
r [] [] 26112 25651 51
in[] 1 1 1

Table 1 Initial signal sizes and their reduction for the optimized control
flow definition given in figure 4.

From table 1, it is clear that the total memory requirements have been reduced
with roughly three orders of magnitude. Based on these numbers per multi
dimensional signal, the total storage requirements can be further reduced by
the in-place reduction of r [] [0], r [] [] and return [] signals requiring only
P storage locations. This solution is equivalent with one found manually [33J.
In general, the result is dependent on the values of the parameters. In order to
show this, another experiment has been conducted for a second parameter set,
with P =10 and N =52. In that case, the solution obtained is a column-wise
computation, which corresponds to the one found manually.

Similar results have been achieved for other realistic test vehicles [31J. We would
especially like to mention a complex updating singular value decomposition
algorithm, needed, for example, in data acquisition [I5J.

Summary

The experiments with the auto-correlation demonstrator have clearly illustrated
that carefully deciding on control flow has a pronounced effect on the storage
requirements. The potential effect is a reduction with orders of magnitude of
the amount of storage locations needed. A similar effect has been observed
for the access bandwidth, resulting in a significant decrease of the number of
parallel memory ports needed in the architecture. The CPU time required for
performing the control flow manipulation on this demonstrator amounts to 202
seconds on a DecStation 3100, which is very reasonable. This CPU time grows
only linearly with the number of signal definitions and exponentially with the
loop nesting degree (which in practice remains very limited). The optimal
ordering also clearly differs for different parameters for the same algorithm.

www.manaraa.com

156 CHAPTER 7

One of the main reasons for the success of this approach is that in our PDG
control flow model, changes of placement and ordering vectors have explicitly
measurable effects on storage- and access-related optimization criteria. This is
lacking in the conventional signal flow graph models.

3 HIGH-LEVEL DATA-PATH MAPPING

In section 1, it has been shown that we need complex application-specific data
paths or ASUs to match the characteristics of our target application domain.
Moreover, the assignment of chained operations to these ASUs, the definition
or their internal organization, and the pipeline scheduling have been identified
as important subtasks during data-path mapping. It has also been motivated
that the memory cost is very dominant, so the data-path mapping stage is
postponed until after high-level memory management decisions related to M-D
signal storage have been dealt with. The outcome of the memory management
stage are constraints on the loop organization and the indexing, assignments of
M-D signals to background memories, and address operations that have been
added to the data flow graph.

The global objective of the CATHEDRAL-3 high-level data-path mapping design
stage is then to map the basic arithmetic, logic, and relational operations in
the application to a set of ASU architectures. For this purpose, a script specific
to the target domain has been developed [18, 3, 8). We will now illustrate the
techniques for the most important subtasks by means of a realistic demonstrator
design for a video conversion application.

1 A YUV-RGB video format conversion application

A color video signal which is produced by a camera or displayed by a cathode
ray tube consists of the basic color components. In video applications, these
are usually red, green, and blue. The human eye is, however, perceptually more
sensitive for luminance variation than it is for color or chrominance variations.
Therefore, it is possible to obtain a significant compression by re-encoding of
the (R, G, B) components to a luminance component Y, which has the same
resolution as the original video signal, and two chrominance components (U, V),
which have half the resolution of the original video signal. In this way, the re
quired bandwidth for transmission or the required memory capacity for storage
can be reduced significantly.

www.manaraa.com

High-throughput memory and data-path mapping

Delay line
RO

Delay line GO
BO

YO Delay line

U 16 Tap FIR filter
RI

V 16 Tap FIR filter 01
BI

YI Delay line

Figure 5 Block diagram for YUV to RGB conversion application.

157

At the receiver side, the inverse conversion from (Y, U, V) to (R, G, B) has to
take place. The block diagram for the main kernel of this conversion algorithm
is given in figure 5, and the SILAGE [6J specification is shown in figure 6. Four
main signal processing blocks are present: two interpolation filters, one per
chrominance component; and two matrix operations, one for each set of outputs.

2 Decisions on data-path organization

First, the basic arithmetic, logic, and relational operations in the application
are mapped to a set of dedicated ASUs. This is done in four basic synthesis
steps in the script [18, 3, 8].

Data-path optimizing transformations

The objective here is to steer high-level transformations on the DFG, including
the application of algebraic laws, decisions on the remaining control flow free
dom, and modification of operation cluster boundaries. Both global and local
steering mechanisms are under development. For the YUV-RGB application,
manually driven transformations have already been performed on the descrip
tion in figure 6. For example, algebraic laws such as associativity have been
applied to the FIRs to arrive at the special flow graph arrangement specified.
Also, multi-rate to single-rate transformations have been applied already. As a
result, the global sample rate requirement has become 6.75 MHz.

Operation clustering

Here, operations are grouped into clusters in order to exploit the structure
present in the flow graph. The objective function is cluster similarity within
the timing constraints imposed. Within the single clock cycle constraint, which

www.manaraa.com

158 CHAPTER 7

1* HAT_O_a *1
1* HAT_O_a *1
1* HAT_O_a *1
1* HAT_O_b *1
1* HAT_O_b *1
1* HAT_O_b *1
1* HAT_l_a *1
1* HAT_l_a *1
1* HAT_Ca *1
1* HAT_l_b *1
1* HAT_l_b *1
1* HAT_l_b *1

'define WO fix<18, 0>
'define WC fix<12,11>
func main(U, V, YO, Yl:WD) Bl, Gl, Rl, BO, GO, RO: WO =
begin
1* FIR for U signal *1
uOa = (WD(C15 * (U + UI/I15» +

WD(C13 * (Ul/ll + UI/I14»);
uOb = uOa + (WD(Cll * (U1/I2 + UI/I13» +

WD(C9 * (U1/I3 + UI/I12»);
uOc = uOb + (WD(C7 * (U1/I4 + Ul/lll» +

WO(C5 * (U1/I5 + Ul/ll0»);
uOd = uOc + (WD(C3 * (UI/I6 + UI/I9 » +

WD(Cl * (UI/I7 + UI/I8 »)«1; 1* FIR_U_d *1
1* FIR for V signal *1
vOa = (WO(C15 * (V + VilI15» +

WD(C13 * (VilIl + VilI14»);
vOb = vOa + (WO(Cll * (VilI2 + ViII13» +

WO(C9 * (VI/I3 + VI/I12»);
vOc = vOb + (WD(C7 * (VI/I4 + Vl/lll» +

WD(C5 * (VI/I5 + Vl/ll0»);
vOd =vOc + (WD(C3 * (VI/I6 + VIlI9 » +

WD(Cl * (VI/I7 + VIlI8 »)«1; 1* FIR_V_d *1
1* four delay lines *1
uO =uOd; ul =U1/I7; vO = vOd; vl = ViII7; yO = Yl1/18; yl = YOIll7;
1* two 3 by 3 matrix multiplications *1
vOx = vO - 128;
RO = yO + (WO(350 * vOx»>8);
gOa = yO + WD(-179 * vOx);
uOx = uO - 128;
GO = gOa + (WD(-85 * uOx»>8);
BO = yO + (WO(443 * uOx»>8);
vlx = vl - 128;
Rl = yl + (WD(350 * vlx»>8);
gla = yl + WD(-179 * vlx);
ulx = ul - 128;
Gl = gla + (WD(-85 * ulx»>8);
Bl = yl + (WD(443 * ulx»>8);
end;

Figure 6 SILAGE description for YUV-to-RGB conversion.

www.manaraa.com

High-throughput memory and data-path mapping 159

is assumed to be 27 MHz for our 1.2 /.Lm CMOS library, 12 initial clusters can
be identified for our demonstrator. This has been achieved using a simple
clustering strategy, mainly based on the desired number of clusters (currently
user-defined) and on their similarity in terms of operation and dependency
types. In the SILAGE description in figure 6, these clusters are indicated at
the right-hand side: four expressions in both FIR filters (FIR-xxx) and four
expression groups in the matrices (MAT-xxx). Note that the delayed signal
assignments (indicated with ~) are ignored at this stage, since they are dealt
with later, during the low-level mapping [8, 18].

ABU assignment

This step involves allocation and assignment of clusters to ASUs. Compatibility
measures between clusters are the objective function here, again within the
imposed global timing- and memory-related constraints [3]. The assignment
problem is formulated as a graph partitioning problem, in which the most
similar clusters are assigned to the same partition. Similarity of clusters is
measured by means of a cluster distance, which is defined as the difference
of the hardware costs of the two clusters and the hardware costs of the set of
resources which can execute both clusters: D(a, b) = 2x Cab -Ca-Cb. Both the
internal compatibility cost, i.e., the similarity expressed as hardware sharing
overhead, and the embedding cost, i.e., an estimate of inter-ABU interconnect
cost, are included. The graph partitioning problem is translated into a mixed
ILP formulation, which also allows for an automatic distribution of the cycle
budget over the hierarchical blocks in case of control flow hierarchy.

For the YUV-RGB application, there are 12 clusters that have to be executed
in four clock cycles due to HSF requirement of 27 MHz / 6.75 MHz. This means
that the clusters will have to be assigned to one of three ASUs. The internal
compatibility measure shows a high degree of similarity for the eight clusters
of the FIR filters (D = 0.5 ... 1.0mm2) and for the clusters of the matrix (D =
0.6 ... 0.9mm2), as indicated by the cluster distance entries without brackets
in table 2. The FIR clusters are very different from the matrix clusters (D =
2.2· . ·2.9mm2

). This will favor an assignment of the matrix clusters to one
and the same ASU. However, the embedding compatibility is higher for the
clusters that belong to the same FIR filter because there are intercluster data
dependencies, as indicated by the cluster distance entries within the brackets
in table 2. Hence, each filter is executed on a separate ASU. The required CPU
time amounts to 112 seconds, plus about five minutes for a general-purpose ILP
package on a DecStation 5000. The resulting assignment is given in table 3.

www.manaraa.com

160 CHAPTER 7

Cluster FIR_U-a FIR_U_b ... FIR_V-a FIR_V_b ... MAT_O-a MAT_O_b ...

FIR_U-a 0.0 (O.O) 1.0 (1.4) 0.0 (4.2) 1.0 (5.2) 2.5 (6.3) 2.9 (7.1)
FIR_U_b 0.0 (O.O) 1.0 (5.2) 0.0 (4.2) 2.4 (6.2) 2.6 (6.8)

FIR_V-a 0.0 (O.O) 1.0 (1.4) 2.5 (6.3) 2.9 (7.1)
FIR_V_b 0.0 (0.0) 2.4 (6.2) 2.6 (6.8)

MAT_O-a 0.0 (O.O) 0.9 (4.2)
MAT_O_b 0.0 (O.O)

Table 2 Cluster distances for the YUV-to-RGB conversion. The figures
within brackets take embedding compatibility into account.

ASU instance I Assigned clusters

ASU-A FIR_U_a, FIR_U_b, FIR_U_c, FIR_U_d
ASU-B FIR_V-a, FIR_V_b, FIR_V_c, FIR_V_d
ASU_C MAT_O-a, MALO_b, MAT_1-a, MAT_Lb

Table 3 The cluster assignment for the YUV-to-RGB conversion.

ASU definition

The ASU composition can now be determined, with the area cost in terms of
abstract building blocks (such as adders) as the objective function. This offers
early feedback on the quality of the clustering and the ASU assignment. The
constraints are those imposed by the ASU assignment, and the I/O constraints
imposed, for example, by memory management. The output includes the as
signment of operations to building blocks. This involves a resource-sharing
problem [18, 27, 4], deciding on the selection of the suitable FU types for each
operation, the allocation of the desired number of FUs per type, a decision on
the assignment of operations to FUs, and the interconnection of the FUs by
means of a programmable switching network.

We have presented a fast ASU definition technique based on pairwise merging
[4J: iterating over the set of clusters assigned to an ASU, merging two clusters
in each iteration step. The merging is modeled as a bipartite matching problem.
A recent version of this technique, which includes more accurate modeling of
interconnect cost, leads to the ASU structures in figure 7 within a CPU time
of 41 seconds. This result exhibits a very limited hardware sharing overhead,
and almost all building blocks are occupied all of the time. The combined

www.manaraa.com

High-throughput memory and data-path mapping 161

ASU_A, ASUJ3 ASU_C

Figure 7 Synthesised ASU structures for the YUV-to-RGB conversion.

active area occupied by these ASUs is only 13.3 mm2 for a 1.2 /-Lm CMOS
library. Note that the areas occupied by memory, routing, and controller are
not incorporated in this figure, since they result from other design stages in the
trajectory [18]. This solution is also equivalent with the one found manually.

3 Evaluation of the result and design iteration

In order to evaluate the quality and feasibility of this allocation and assignment,
two more subtasks are performed. These provide important feedback to the
designer, and they can initiate design iterations:

• Pipeline balancing: the ASU compositions in terms of abstract building
blocks are retimed, and selection of implementations of the building blocks
is performed to check whether the proposed clock period can be achieved.
If desired, a balancing of the pipelines can be performed to reduce the
hardware cost [18].

• Cluster scheduling: this scheduling step is mainly used to evaluate the
memory and interconnect cost, and to check the feasibility of the result
proposed by all other steps. High-level scheduling models can be used to
increase the efficiency.

For the YUV-RGB demonstrator, it is possible to schedule the 12 available
clusters on the three ASUs within the four available clock cycles. This
means a functional hardware use of 100%. This is feasible by using an ILP
based scheduling technique, which can deal with very tight schedules in a
close-to-optimal way. This is in contrast with the scheduling techniques
for the highly multiplexed processors in chapters 8 and 9.

www.manaraa.com

162 CHAPTER 7

The final ASU architecture has very little programmability overhead and is opti
mal for the given throughput requirement and the available library of hardware
operators. Subsequent design stages are needed in CATHEDRAL to arrive at the
actual layout [8].

4 CONCLUSION

In this chapter, several important contributions have been described in the con
text of architectural synthesis for irregular high throughput applications. These
are mainly situated in the domain of memory management techniques to ar
rive at area-efficient memory organizations and data-path mapping techniques
to come up with customized data-path configurations that meet the stringent
throughput requirements.

The power of the approach has been demonstrated on two realistic real-time
signal processing applications, namely an auto-correlation kernel in a CD in
terpolator and a YUV-RGB video format converter. The results for both test
vehicles are partial but nevertheless very promising. This has been achieved
by adopting a very tuned synthesis script and dedicated synthesis techniques
targeted to the CATHEDRAL-3 application domain. These differ considerably
compared to the approaches proposed in chapters 8 and 9, which are oriented
to different target domains. There are also significant differences with other
techniques in the literature [7, 9, 13, 21, 25].

REFERENCES

[1] F. Catthoor and H. De Man. Application-specific architectural methodolo
gies for high-throughput digital signal and image processing. IEEE Trans.
on Acoustics, Speech and Signal Processing, 37, number 2, pages 176-192,
Feb 1990.

[2] F. Franssen, M. van Swaaij, F. Catthoor, and H. De Man. Modeling piece
wise linear and data dependent signal indexing for multi-dimensional signal
processing. In Proc. 6th Int. Workshop on High-Level Synthesis, Laguna
Beach CA, Nov 1992.

[3] W. Geurts, F. Catthoor, and H. De Man. Time constrained allocation and
assignment techniques for high throughput signal processing. In Proc. 29th
ACM/IEEE Design Automation Conf., Anaheim CA, pages 124-127, Jun
1992.

www.manaraa.com

High-throughput memory and data-path mapping 163

[4] W. Geurts, F. Catthoor, H. De Man. Heuristic techniques for the synthesis
of complex functional units. In Proc. of 4th European Design Automation
Conj., Paris, France, Feb 1993.

[5] G. Goossens, Optimization techniques for automated synthesis of
application-specific signal-processing architectures. PhD thesis, ESAT, K.
U. Leuven, Belgium, Jun 1989.

[6] P. N. Hilfinger, J. Rabaey, D. Genin, C. Scheers, and H. De Man. DSP
specification using the Silage language. In Proc. Int. Conj. on Acoustics,
Speech and Signal Processing, Albuquerque, NM, pages 1057-1060, April
1990.

[7] K. S. Hwang, A. Casavant, C-T. Chang, and M.d'Abreu. Scheduling and
hardware sharing in pipelined data-paths. In Proc. IEEE Int. Conj. Camp.
Aided Design, Santa Clara CA, pages 24-27, Nov 1989.

[8] D. Lanneer, S. Note, F. Depuydt, M. Pauwels, F. Catthoor, G. Goossens,
and H. De Man. Architectural synthesis for medium and high through
put signal processing with the new CATHEDRAL environment. In R.
Camposano and W. Wolf, editors, Trends in high-level synthesis, Kluwer,
Boston, 1991.

[9] P. Lippens, J. van Meerbergen, A. van der Werf, W. Verhaegh, B. Mc
Sweeney, J. Huisken, and O. McArdle. PHIDEO: a silicon compiler for
high speed algorithms. In Proc. European Design Autom. Conj., Amster
dam, The Netherlands, pages 436-441, Feb 1991.

[10] D. B. Loveman. Program improvement by source-to-source transformation.
Journal of the ACM, 24, number 1, pages 121-145, 1977.

[11] D. Mallon and P. Denyer. New approach to pipeline optimization. In
Proc. 1st ACM/IEEE Europ. Design Automation Conj., Glasgow, Scot
land, pages 83-88, Apr 1990.

[12] T. H. Matheiss, D. S. Rubin. A survey and comparison of methods for
finding all vertices of convex polyhedral sets. Mathematics of Operations
Research, 5, number 2, pages 167-185, 1980.

[13] M. C. McFarland, A. C. Parker, and R. Camposano. The high-level syn
thesis of digital systems. Proc. of the IEEE, 78, number 2, pages 301-318,
Feb 1990.

[14] D. Moldovan. Advis: a software package for the design of systolic arrays.
In Proc. IEEE Int. Conj. on Computer Design, Port Chester NY, pages
158-164, Oct 1984.

www.manaraa.com

164 CHAPTER 7

[15J M. Moonen, P. Van Dooren, J. Vandewalle. SVD-updating for tracking
slowly time-varying systems. Advanced algorithms and architectures for
signal processing IV, Proc. SPIE conf., Volume 1152, San Diego CA, Nov
1989.

[16] G. L. Nemhauser and L. A. Wolsey. Integer and combinatorial optimiza
tion. Wiley, New York, 1988.

[17J A. Nicolau, Loop quantization: a generalized loop unwinding technique.
Journal of Parallel and Distributed Computing, 5, pages 568-586, 1988.

[18] S. Note, W. Geurts, F. Catthoor, and H. De Man. Cathedral III: Archi
tecture driven high-level synthesis for high throughput DSP applications.
In Proc. 28th ACM/IEEE Design Automation Conf., San Francisco CA,
pages 597-602, Jun 1991.

[19] D. A. Padua and M. J. Wolfe. Advanced compiler optimizations for super
computers. Communications of the ACM, 29, number 12, pages 1184-1201,
1986.

[20] K. Parhi. Algorithmic transformation techniques for concurrent processors.
Proc. of the IEEE, 77, number 12, pages 1879-1895, Dec 1989.

[21] N. Park and A. C. Parker. Sehwa, a software package for synthesis of
pipelines from behavioral specifications. IEEE Trans. on Compo aided De
sign, CAD-7, number 3, pages 356-370, Mar 1988.

[22] N. Park and F. J. Kurdahi. Module assignment and interconnect sharing
in register-transfer synthesis of pipelined data paths. In Proc. IEEE Int.
Conf. Compo Aided Design, Santa Clara CA, pages 16-19, Nov 1989.

[23] C. Polychronopoulos. Compiler optimizations for enhancing parallelism
and their impact on the architecture design. IEEE Trans. on Computers,
37, number 8, pages 991-1004, Aug 1988.

[24J P. Quinton and Y. Robert, editors. Algorithms and parallel VLSI architec
tures II. Elsevier, Amsterdam, 1992.

[25J J. Rabaey and M. Potkonjak. Resource-driven synthesis in the HYPER
environment. In Proc. IEEE Int. Symp. on Circuits and Systems, New
Orleans, pages 2592-2595, May 1990.

[26J A. Schrijver. Theory of linear and integer linear programming. Wiley, 1986.

www.manaraa.com

High-throughput memory and data-path mapping 165

[27] A. van der Werf, E. Aerts, M. Peek, J. van Meerbergen, P. Lippens, and W.
Verhaegh. Area optimization of multi-function processing units. In Proc.
IEEE Int. Conf. Compo Aided Design, Santa Clara CA, pages 292-299,
Nov 1992.

[28] J. Vanhoof, I. Bolsens, and H. De Man. Compiling multi-dimensional data
streams into distributed DSP ASIC memory. In Proc. IEEE Int. Conf.
Compo Aided Design, Santa Clara CA, pages 272-275, Nov 1991.

[29] M. van Swaaij, J. Rosseel, F. Catthoor, and H. De Man. High-level syn
thesis of ASIC regular arrays for real-time signal processing systems. In
Proc. Int. Workshop on Algorithms and Parallel VLSI Architectures, Pont
a-Mousson, France, June 1990.

[30] M. van Swaaij, F. Franssen, F. Catthoor, and H. De Man. Modeling
data and control flow for high-level memory management. In Proc. 3rd
ACM/IEEE Europ. Design Automation Conf., Brussels, Belgium, March
1992.

[31] M. van Swaaij, F. Franssen, F. Catthoor, and H. De Man. Automating
high-level control flow transformations for DSP memory management. In
Proc. IEEE workshop on VLSI signal processing, Napa Valley CA, Oct
1992.

[32] M. van Swaaij, F. Franssen, F. Catthoor, and H. De Man. High-level model
ing of data and control flow for signal processing systems. In M. Bayoumi,
editor, Design Methodologies for VLSI DSP Architectures and Applica
tions, Kluwer, Boston, 1992.

[33] I. Verbauwhede, F. Catthoor, J. Vandewalle, and H. De Man. Background
memory management for the synthesis of algebraic algorithms on multi
processor DSP chips. In Proc. VLSI'89, Int. Conf. on VLSI, Munich, Ger
many, pages 209-218, Aug 1989.

[34] I. Verbauwhede, F. Catthoor, J. Vandewalle, and H. De Man. In-place
memory management of algebraic algorithms on application-specific ICs.
Journal of VLSI signal processing, 3, pages 193-200, 1991.

www.manaraa.com

8
AUTOMATIC SYNTHESIS FOR

MECHATRONIC APPLICATIONS

Peter Pochmiiller, Norbert Wehn, Manfred Glesner

Darmstadt University of Technology

ABSTRACT

This mechatronic applications chapter presents the application of high-level
synthesis techniques in connection with a rapid prototyping environment. This
methodology is part of a design approach supporting the development of em
bedded information-processing units in complex mechatronic systems. In the
following, a synthesis environment will be presented that automatically maps
modules of a mechatronic system to be implemented as ASICs onto a rapid
prototyping board.

1 INTRODUCTION

Traditional high level synthesis approaches [1, 2J start with a behavioral speci
fication of an algorithm and proceed to derive an application-specific integrated
circuit (ASIC) solution realizing the intended behavior. In contrast to this, the
intention of the approach presented in this chapter is not to derive a specific
ASIC architecture, but to get early estimations of overall system performance
if certain components will be realized as ASICs and to derive a first prototype
that permits real-time system simulations. In order to meet those goals during
early design phases, we use an ASIC emulator board which is part of a larger
design framework supporting the development of complex mechatronic systems.
The framework supports a wide spectrum of subcomponent realizations, rang
ing from software implementations over digital signal processor (DSP) solutions
to ASIC emulation in a heterogeneous multiprocessor environment.

167

www.manaraa.com

168 CHAPTER 8

2 SYSTEM OVERVIEW

The intention of this section is to give a brief overview on the whole frame
work, since the remainder of this chapter will focus exclusively on a single
aspect, namely the automatic synthesis of a behavioral specification down to
the ASIC emulator board. If the emulation demonstrates that an overall per
formance increase will be obtained through the realization of corresponding
system submodules by an ASIC, other synthesis tools (such as CATHEDRAL or
AMICAL, described in chapters 7 and 9) have to be used to derive a final chip
solution replacing the emulator.

1 Context

The overall system performance of machine tools, vehicles, and aircraft can be
improved significantly through the application of embedded information tech
nology with intelligent software for the realization of core system components.
Mechanical systems with embedded information-processing units are usually
referred to as mechatronic systems. Mechatronics (mechanics and electronics)
can be described as an emerging engineering discipline dealing with the design,
manufacturing, and operation of machines capable of intelligent behavior [3J.
The design and implementation of corresponding systems is a highly complex
task, involving problems like hardware/software tradeoff, system partitioning,
final realization of components through microprocessors or ASICs, etc. Behav
ioral simulation is one approach to support such early design decisions; however,
in this case the mechanical subsystem has to be modeled appropriately. The
main problem of that approach is to determine whether false system response
is due to an error in the control algorithm or in the model of the mechanical
subsystem itself. A promising alternative to that approach is the application of
hardware-in-the-loop simulation with real-time capabilities. In that case, the
hardware simulator can be considered as a prototype implementation that can
be attached directly to the mechanical process; thus, no model of the process
is required. The prototype has the same functionality as the final implementa
tion, only differing in physical dimension, power consumption, etc. One main
characteristic of such a prototype is that changes can be implemented quickly;
thus, the prototype allows to validate design decisions in early design phases.
This strategy is called rapid prototyping [4J.

Figure 1 gives an overview of the whole rapid prototyping system design frame
work [5J. The overall system specification is done in a language called RPL
(rapid prototyping language). The first design step is the partitioning of this

www.manaraa.com

Synthesis for mechatronic applications

Desi n Editor

SYSTEM ParEstj

-TASK 1;
TASK 2;-

I it
L TASK 3;-

Computer Aided Prototyping

169

Process Visualization

11;····11
Zl3

"'-

High Level/Structural
Synthesis

Code Generators

I I I I I I
Third Party Tools

I I I I I I

ASIC Emulator
Micro

Controller

Fixed Point
DSP

Floating Point

DSP

Fuzzy

Processor

- State Variable Filter
- Clutch Control
- Volume Flow Sensor
- Intelligent Tire

Figure 1 Rapid prototyping system design framework.

www.manaraa.com

170 CHAPTER 8

specification into different tasks. Through a set of compiler/third party tools,
a single task can be mapped to software solutions (Pascal, C) running on a
host computer, to fuzzy processor software, to firmware for standard signal
processors/microcontrollers, or onto an ASIC emulator. In the remainder of
this chapter, emphasis will be on the ASIC emulator board. Therefore, it will
be assumed that partitioning has already been performed, and a single task
(process) is to be realized through the ASIC emulator.

2 ASIC emulator synthesis environment

As already stated above, the synthesis path toward an ASIC emulator requires
as input specification a HARDWAREC description of a single task. This spec
ification will be provided within the rapid prototyping framework depicted in
figure 1. HARDWAREC as used in this system is not equivalent to Stanford
HARDWAREC [6] which was found to be too restrictive to be used directly for
our mechatronic applications. This is mainly due to the fact that Stanford
HARDWAREC does not support complex data types and arrays of them (large
integer, fix, etc.). On the other hand, many features of Stanford HARDWAREC
are not required in this context, since only single tasks (including host com
munication) have to be specified, and no structural components are required.
Figure 2 gives an example specification of a differential heat release compu
tation (DHRC) algorithm, which in the following will be used to illustrate all
main synthesis steps. This algorithm realizes a simplified computation of the
heat release within a combustion engine [9].

As a first step, the HARDWAREC compiler performs a profound data/control
flow analysis. A DFG optimizer is directly coupled to the compiler. After
optimization, the data/control-flow graph will be stored as a combined single
flow graph which can be considered as a data base. All behavioral synthesis
transformations require input from this data base and will produce output in
the graph format defined in chapter 2.

Behavioral synthesis comprises several transformations [7] of the optimized flow
graph. The final result of all behavioral synthesis steps will again be a flow
graph, since hardly any structural information will be added through those
transformations. The most important behavioral synthesis steps in our appli
cation domain are background memory management and loop folding. Both
have strong effects on the final throughput. Other more common transforma
tions are, for example, loop unfolding and tree balancing, which will not be
explicitly mentioned in this chapter.

www.manaraa.com

Synthesis for mechatronic applications

inout int<16> host;

void main 0

{int<16> aO, a1, a2, h2, h3, h5, cv, dp, h6, h7, d, h9. bvl, i;

int<16> V[469] , p[469] , dv[469], bvl[469];

int<32> hl, h4, sl, s2, s, h8;

get (aO, host); get (al, host); get (a2, host);

get (p[339] , host); get (p[340] , host);

s = cv =h7 =h6 =h4 =dp = 0;

for(i =340; i < 468; i++)

{ get(p[i+l], host);

d =p[i+l] - p[i-l];

dp =d/2;

hl =aO * (int<32»V[i];

h2 = (int<16»(hl » 14);

h3 =a1 + h2;

h4 =h3 * (int<32»p[i];

s2 =dp * (int<32»V[i];

h7 (int<16»(s2» 12);

h5 = (int<16»(h4 » 11);

cv =h5 + a2;

s1 = p[iJ * (int<32»dv[i];

h6 = (int<16»(s1 » 12);

s = h6 + h7;

h8 =s * (int<32»cv;

h9 = (int<16»(h8 » 11);

bvl[i] =h9 + h6;

put (host , bvl[i]); }

}

synthesisconstraints { /* CBB constraints */

time { cycletime =200ns; setuptime = 10ns; holdtime = 10ns; }

hardware { barrelshifter ««,90ns) (»,90ns) bit<32> bit<16»;

1 adder «+,140ns) bit<16> bit<16> bit<16»;

1 mUltiplier «*,150ns) bit<16> bit<16> bit<32»; }

}

Figure 2 Differential heat release computation algorithm (DHRC).

171

www.manaraa.com

172 CHAPTER 8

Structural synthesis comprises another group of transformations to be executed
on the submitted flow graph. The main tasks to be solved are scheduling, allo
cation, and binding. The flow graph format cannot be maintained during those
steps, since more and more structural information will be derived. The final
output after structural synthesis will be all information necessary to customize
the ASIC emulator board.

All the synthesis steps mentioned above can be executed either automatically or
interactively. The programmed ASIC emulator can be inserted directly into the
overall mechatronic system to facilitate real-time test runs. In the following,
all main synthesis steps will be described in the same top-down sequence as
they are implemented through the synthesis script. Throughout the rest of the
chapter, the terms ASIC emulator (board), rapid prototyping board, and target
architecture will be used synonymously.

3 APPLICATION DOMAIN AND TARGET

ARCHITECTURE

The application domain and ASIC emulator architecture strongly influence
the overall synthesis script as well as the actual algorithms for solving single
synthesis tasks. In order to achieve efficient solutions, our whole approach
has been tuned toward real-time system applications as they are found in
mechatronic systems. To support the understanding of the implemented ap
proach/algorithms, this section will describe the intended application domain
and ASIC emulator architecture in more detail.

1 Application domain

This synthesis approach is tuned toward real-time applications appearing in
mechatronic systems, such as an adaptive shock absorber, a combustion engine
controller, intelligent tire friction control, volume stream measurement, etc. A
large number of microelectronic subcomponent designs have been studied [8J.
As a result, it was found that the designs typically share the following common
characteristics:

• The data/control-flow graphs are large and complex. Moreover, the appli
cations require clock frequencies of 10-20 MHz, whereas the intermediate
data throughput and sample frequencies remain far below 1 MHz. As a
result of these factors, the hardware-sharing factor (HSF) is much larger
than 1, resulting in highly multiplexed architectures.

www.manaraa.com

Synthesis for mechatronic applications 173

Benchmark Nodes Edges Background Mutually
memory exclusive

operations

State variable filter 1 307 598 yes no
State variable filter 2 521 945 yes no
DHRC 122 211 yes no
Volume stream measurement 99 188 no yes
Combustion engine control 1047 1953 yes yes

Table 1 Benchmark set of mechatronic applications.

• Some applications require floating-point arithmetic (which is not supported
by the emulator board and module library).

• There are only one- and two-dimensional data streams (vectors and ma
trices) of complex data types (large integer, fix). Typical vector sizes are
10-500 elements. Arrays with two dimensions have less than 10 entries in
each dimension.

• Due to the presence of these arrays and vectors, a considerable part of
the area of the final ASIC implementations (not the ASIC emulator) is
occupied by memory.

• Single processes have to be realized, which only communicate with a flex
ible host and the mechanical process.

• There is a large dynamic range of values to be processed.

The target architecture described below provides a high degree of parallelism
and is defined in such a way that the characteristics listed above are met.
In contrast to this, the application domains as defined in chapter 7 (data
flow-dominated applications where a hardware-sharing factor closer to 1 im
plies a lowly multiplexed architecture handling complex multidimensional data
streams) and chapter 9 (control-flow-dominated applications) differ in most
regards. To develop a suited synthesis script and corresponding tools, an ap
propriate benchmark set was compiled, as shown in table 1. The number of
nodes and edges refer to flow graphs after compilation without optimization. In
order to permit a comparison with traditional high-level synthesis approaches
[1, 2]' the well-known fifth order elliptic filter benchmark has been compiled,
too. With 68 nodes and 131 edges after compilation, the filter is a quite small

www.manaraa.com

174 CHAPTER 8

Figure 3 Flow graph of state variable filter 2 after compilation and
optimization.

synthesis example. In contrast to this, figure 3 shows the flow graph of the
"state variable filter 2" benchmark algorithm (which has constant matrices)
after compilation and optimization. The DHRC example of table 1 is small
but nevertheless realistic; it will therefore be used throughout this chapter to
illustrate the different synthesis steps. At this moment, there is no way to
map the combustion engine control benchmark onto the emulator board since
it involves floating point arithmetic. However, it is a realistic example that
has been realized as an ASIC [9], and it is therefore a very good test vehicle
to study effects of behavioral transformations (especially background memory
management) .

2 Target architecture

The principal target architecture of the emulator is given in figure 4. It com
prises a host interface, four configurable building blocks (CBBs), and a process
interface (8 analog input channels, 1 analog output channel, 16 digital I/O
channels, and 2 programmable timers). Those blocks are connected via a pro
grammable routing network, consisting of four busses. The fifth bus is used
for debugging purposes only. All data communication busses are split into in
dependent bus segments which can be connected via programmable switching

www.manaraa.com

Synthesis for mechatronic applications

Pro . Crossbar Switch

Figure 4 ASIC emulator target architecture.

r------------------,

Figure 5 The architecture of a configurable building block (CBB).

175

matrices. The matrices are full crossbar switches; each matrix can establish all
possible connections between its inputs at any time. A CBB consists of two in
puts, one output, and one operational unit (see figure 5). Operands are buffered
in dual-port memories or FIFOs. The switching matrix and operand memories
with their multiplexors are realized as ASICs in a 1.5J.lm CMOS technology.
When the architecture of figure 4 is used as an ASIC emulator board, the op
erational units are implemented by means of field-programmable gate array
(FPGA) devices (XILINX XC4005). A customization of the board is achieved

www.manaraa.com

176 CHAPTER 8

by down-loading configuration files from a library. The global board controller
includes a sequencer (realized by an FPGA). To minimize interconnection be
tween controller and data-path, all micro-instructions are stored locally in an
instruction memory on each CBB.

This architecture is justified by the following reasons:

• The use of FPGAs as operational units allows a large flexibility in cus
tomizing the ASIC emulator.

• Sufficiently high parallelism can be achieved (four CBBs).

• The highly multiplexed data-path architecture supports mapping of com
putationally intensive algorithms with a large hardware sharing factor.

• FIFOs as operand memories are well suited for vectorjmatrix operations.

• The number of active switching elements is a good estimation for the rout
ing complexity of a corresponding ASIC implementation.

4 BEHAVIORAL SYNTHESIS TRANSFORMATIONS

A large number of behavioral synthesis transformations have been implemented
in the system. However, this chapter will only focus on the more important
and interesting transformations, especially background memory management
and loop folding. More common behavioral synthesis steps, like loop unfold
ing or tree balancing, are not presented due to the limited space available. In
this approach, compiler optimizations are also regarded as behavioral transfor
mations. The different steps will be illustrated using the DHRC example of
figure 2.

1 Compiler optimizations

The first synthesis step is a graph optimization, as is familiar in software com
piler construction. Figure 6 shows the flow graph of the DHRC example directly
after compilation. The goal of the optimization process is to execute transfor
mations on the flow graph which will improve final synthesis results or at least
speed up synthesis through simpler graphs (without influencing the efficiency
of the final solutions negatively). Those transformations do not include any
structural synthesis steps. This means that all those graph transformations
are regarded as optimizations where it is possible to predict an improvement

www.manaraa.com

Synthesis for mechatronic applications 177

o

Figure 6 Flow graph of unoptimized DHRC example directly after
compilation.

exclusively based on flow graph information. Some typical tasks that can be
solved are dead-code elimination, removal of redundant expressions, and con
stant propagation. Furthermore, the HARDWAREC compiler produces redun
dant edges/nodes in connection with variables. During parsing, it is not possible
to know if there will be any other future reference to a written variable. There
fore, in the case of loops, variables will be led out for flow graph connections in
future references. This is also the prime source of redundancy in figure 6. Fig
ure 7 shows the same graph after optimization. This transformation reduced
the numbers of nodes/edges from 123/210 to 82/131.

2 Background memory management

In this context, background memory is defined as storage for all data explicitly
defined as arrays in the initial HARDWAREC specification. Foreground mem
ory denotes all registers that are generated during structural synthesis to hold
the values of single variables. After lifetime analysis, several variables with
nonoverlapping lifetimes might share a single register.

The goals of background memory management (BMM) are to minimize back
ground memory (arrays in the HARDWAREC specification) both in number and
size as much as possible, and to simplify address generation taking into ac-

www.manaraa.com

178 CHAPTER 8

Figure 7 Flow gra.ph of optimized DHRC exa.mple.

count user-defined constraints. Background memory management has proved
to be an important behavioral synthesis transformation for specifications with
a considerable number of arrays and vectors [10]. In the investigated exam
ples, it was so critical that without BMM, no final ASIC solution was possible.
Therefore, BMM was selected to be the first behavioral synthesis transforma
tion (after optimization) so that the design space is still as little restricted
as possible. This is in agreement with research results on high-level memory
management presented in chapter 7. However, our mechatronic applications
motivate a different memory management approach due to their distinct char
acteristics. There are no multidimensional data with huge index spaces, but
only vectors and two-dimensional matrices of complex types with a limited in
dex space (considerably less than 100 in each dimension). Generally, there are
no large off-chip memories, and efficient realizations require the size of the on
chip background memories to be minimized. Furthermore, vector and matrix
updating is already organized to produce compact arithmetic computations in
the initial HARDWAREC specification (e.g., complete pressure and volume vec
tors are processed to produce a new resulting vector). Hence, there is less need

www.manaraa.com

Synthesis for mechatronic applications 179

for polyhedral analysis to improve the global loop structure (see chapter 7).
Instead, the emphasis lies on I/O access management and memory size reduc
tion based on data flow analysis. To meet these characteristics, the following
background memory management steps have been defined and implemented.

I/O management

In the intended application domain, ASIC subcomponents are generally used
as interfaces between a flexible host computer and the mechanical process to
be controlled. In most cases, host-to-ASIC communication is restricted to an
occasional transfer of parameters, which can be provided by the host in any
desired sequence. This transfer is not time-critical since the time spent in com
putations executed on those data is several orders of magnitude larger than the
transfer time. Therefore, there is a choice of directing n streams of data through
m physical ports. Furthermore, several data streams can be interleaved: for ex
ample, vectors VI = (nl, n2,· .. , nk) and V2 = (ml, m2, ... , ml) with l = 2k can
be read through one physical port in the sequence nl, ml, m2, ... ,nk, ml-I, mi.
This saves one port and might not delay data-dependent operations too much.
Since the current version of the emulator supports only a single port to the host
computer, I/O management has to decide how all data are to be optimally se
quenced into the ASIC emulator board.

Replacement of accesses and arrays

The removal of unnecessary arrays is one of the core processes during memory
management, replacing many redundant memory write- and read-operations
with data edges. This is equivalent to shifting background memory into fore
ground, since values on data edges might later be assigned to registers during
structural synthesis if they are crossing clock cycle boundaries. Figure 8 shows
an example for such a transformation taken from the combustion engine con
trol benchmark. The value Qb [i] /Qmax is computed and assigned to the array
Su [i]. The same value Su [i] is directly accessed in the next statement for
further processing. Human programmers are frequently using arrays in this
way to define data flow without the intention that Qb [i] and Su [i] have to be
realized as explicit memories.

If there would not be any other access to the value Su [i] in the example
above, then the complete update/retrieve-pair could be replaced through a
single data edge, as depicted in figure 8. This means that the value transported
on this data edge will be assigned to a register (foreground memory) during

www.manaraa.com

180 CHAPTER 8

for (i=O; i<128; i++)
{

/* normalization */
Su[i] = Qb[i]/Qmax;
/* air number */
r [i] = Su [i] * ... ;

}

Figure 8 Replacement of memory access operations. The update/re
trieve-node represents a write/read-operation (see chapter 2).

structural synthesis. The corresponding register will probably be shared with
other variables, which is why such a pushing into foreground memory does
not necessarily generate an extensive number of additional registers. Now, the
index values (edges 2, 3, and 4 in figure 8) are not required any more, and
they are subject to further optimizations since all involved computations can
be eliminated. If there are no more update/retrieve operations, then even the
whole array could be eliminated (pushed into foreground).

However, the replacement of update/retrieve-operations and eventually com
plete arrays is rarely as simple as depicted in the example. The comparison
of update/retrieve-indexes is problematic, since the index i generally does not
originate from the same node for different update/retrieve operations (e.g.,
a[i+l] = x[k-3] + 4). This problem has been solved through tree matching
algorithms which are used to compare flow graph structures that are generating
the indexes. A new call of the optimizer will remove obsolete index computa
tions that will further minimize the flow graph.

Compression, merging, reorientation, and type selection

Frequently, only a small "window" of an array is used in a loop iteration to
compute the next entry. A typical expression is the statement a [i] = a [i-1]
+ 3*a[i-2] located within a large loop with index i. If that array is not used
for other computations, the whole structure can be pushed into foreground,

www.manaraa.com

Synthesis for mechatronic applications 181

requiring only three registers. Should the additional number of registers exceed
a user-defined constraint, the array will be compressed to the window size if
the addressing scheme does not become more complicated.

Array merging is the process of forming a new set of n arrays out of m previous
arrays, where n < m. It can be very advantageous to merge arrays, especially
when the lifetimes of the stored values are different (overwriting of old values).
One critical factor in array merging is memory access conflicts. If too many
arrays are merged into one array, and these arrays have data accesses at the
same time, the overall algorithm execution can be prolonged. Nonoverlapping
(in time) array operations are exploited during array merging. Another very
critical factor in array merging is again address computation. If several arrays
are merged into a single array and some of these arrays were already submit
ted to array compression, address computation can become quite complex and
irregular. In such cases no merging will be executed.

All array indices are analyzed over time through a fast simulation to support the
above-mentioned steps. This information will also be used for actual array-type
selection. For the investigated applications, arrays could be realized through
FIFOs or ring buffers in most cases. If possible, array entries will be moved to
other locations to realize monotonous access orders supporting such efficient re
alizations. A fast and very simple list scheduler is used to estimate background
memory access conflicts.

Background memory management can result in strong improvements of effi
ciency if the specified background memory is complex. The DHRC example is
not much affected since the background memory is simple. Only the four arrays
V[469], p [469], dv [469], and bvl[469] are specified explicitly. V and dv
represent static values (volume and differential volume over the engine crank
angle) to be read once at the beginning of the algorithm. (This part is not
included in the HARDWAREC specification of figure 2.) The pressure p has to
be read continuously for each working cycle. In this case, background memory
management only eliminates the lower parts of the arrays that are never ad
dressed (e.g., 0 :s i :s 339 for V). Furthermore, the memory manager proposes
to map Vand dv onto the FIFOs of the ASIC emulator, since their values are
addressed sequentially, whereas p and bvl have to be stored in the interface
section.

As already mentioned earlier, the combustion engine control algorithm is an
excellent test vehicle for behavioral transformations, especially since the back
ground memory is both complex and intricate. The initial HARDWAREC spec
ification uses 37 arrays of 128 float values each. After background memory

www.manaraa.com

182 CHAPTER 8

management, the number of arrays could be reduced to 4 (90% reduction),
the number of array write operations from 48 to 6 (87.5% reduction), and the
number of array read operations from 123 to 26 (79% reduction). Furthermore,
many index computations became obsolete, and a new call of the optimizer
resulted in a reduction of overall flow graph nodes from 1,047 to 765 (29.9%
reduction) and edges from 1,953 to 1,425 (27% reduction). It was also proposed
that the remaining four arrays should be realized as FIFOs.

3 Loop folding

Loop folding is another behavioral synthesis transformation that proved to be
crucial for the applications under investigation [12J. This is because a straight
forward mapping of the graphs onto data-path modules results in relatively
poor hardware utilization. Data dependences prohibit parallel execution in
most cases, if parallelism via loop boundaries (iterations) is not taken into ac
count. However, through loop folding, the potential parallelism of operations
located in different loop iterations (software pipelining) can be exploited.

Most previously published approaches include loop folding into the scheduler
[I1J. This can be problematic for large examples, since schedulers are already
overloaded with solving several crucial tasks simultaneously (operation chain
ing, multicycle operations, mutual exclusiveness, etc). Therefore, in this ap
proach folding was defined as a purely behavioral graph partitioning transfor
mation, not affecting the scheduler directly. The goal of folding is to trans
form, for given hardware resources, the flow graph of a loop in such a way that
throughput will be maximized in the consecutive structural synthesis step.

The partitioning is based on the mobility (3(op) of operations, which is limited
through ASAP- and ALAP-scheduling. A probability p(op,t) can be associated
with each operation, indicating the probability that operation op will finally
be found in clock cycle t. If an operation op has, for example, the mobility
(3(op) = 3 then it is assumed that it will be finally scheduled with a probability
of p(op, t) = t into clock cycle t, ASAP(op) :::; t :::; ALAP(op). To estimate
the distribution of all hardware resources, the probability of a single operation
type can be summed up within a clock cycle to derive the so-called distribution
graph D:

D(op_type,t) = L p(op,t)
opEop_type

where op_type denotes a single operation type, such as adder. This approach
is very similar to the well-known force-directed scheduling [13J. On the left
side, figure 9 shows the distribution graph of the DHRC benchmark's mul-

www.manaraa.com

Synthesis for mechatronic applications 183

1 1
1 ---Cl--f---- -------r-- p,

333

I I I I
o 1 234 5 6 789

1
1 1

-------, p,

o 1 2 3 4 5 6 7 8 9

Figure 9 Distribution graphs of multiplier resources before (left) and
after loop folding.

tiplier resources (the corresponding flow graph is in figure 7). As depicted
by the distribution graph, multiplier utilization is not as smooth as would be
desired. The graph partitioning is realized through a shifting of single oper
ations into the next loop iteration. The shifting is based on a cost change
tlF = GaIter - Gbelore' Costs are computed before and after shifting of an
operation, and as long as cost changes are negative, operations will be shifted
into the next iteration. The actual cost function computations are based on the
distribution graphs, and the more the distribution graphs are deviating from
the average value given through hardware resources, the higher the involved
cost values become. Through this approach, the loop body of figure 7 will
be partitioned into two iterations, resulting in a final flow graph as shown in
figure 10. Obviously the critical path length has been decreased (by four oper
ations), and the multiplier distribution graph on the right side of figure 9 shows
a much more efficient utilization, indicating an increased data throughput.

5 STRUCTURAL SYNTHESIS

After behavioral synthesis, a transformed and optimized flow graph is available,
which still does not include any explicit structural information (except module
type proposals for background memory and constraints specified in the input
description). The goal of the consecutive structural synthesis process is to
transform this flow graph information into an actual implementation that can
be executed on the ASIC emulator board. The main steps to be carried out
are scheduling, allocation, and binding. The results will again be illustrated by
means of the DHRC-benchmark.

1 Scheduling

Scheduling receives the optimized data/control flow graph, a fixed CBB allo
cation, and a maximum timing constraint as input. The goal of scheduling

www.manaraa.com

184

........ ;.

(()(;y:.'
........

.,"'~r;;u...:.:~ ",.

CHAPTER 8

Figure 10 Flow graph of DHRC example after loop folding.

in the presented approach is to assign flow graph operations to time slots, so
that the potential parallelism of the algorithm is exploited as much as possible
by taking into account timing and hardware constraints. This is essentially
the classic microcode scheduling problem. The hardware constraints are the
fixed CBB allocation (as specified in the HARDWAREC description) and the
restrictions imposed by the emulator board. The applications are data-flow
dominated with medium throughput. Thus, heavy time multiplexing on the
few CBBs results. In order to run the board with a moderate frequency (since
CBBs are realized by FPGAs), operation chaining is not allowed. On the other
hand, CBB operations can require more than one clock cycle. The architecture
of the emulator board does not support pipelining. To take into account these
requirements and restrictions, a list scheduling technique was preferred.

Due to the constructive nature of list scheduling, hardware constraints can be
checked easily whenever operations of the ready-list (this list keeps all oper
ations that can be scheduled in the actual control step, i.e., all their prede
cessors are already scheduled) are mapped into the current cycle. In order to

www.manaraa.com

Synthesis for mechatronic applications 185

al=c1+c2;

a2=al+c3;

if (condition)

{ a3=al+c4;

a4=al+a3; }

else a5=al+a2;

/* A3 */
/* A4 */
1* A5 */

Figure 11 An example for mutual exclusiveness.

get a global view, the priority function (which determines the operations to
be deferred if hardware constraints are violated) of the scheduler must reflect
the consequences on all operations not yet scheduled. Instead of using a static
priority function such as the mobility of operations, a dynamic technique is
used that calculates lower bounds on the hardware necessary to execute the
operations not yet scheduled within the timing constraint [151. This guaran
tees a global view on decisions to be made in the actual control step. Some
relaxation techniques are used in order to have a moderate complexity of the
calculation of the lower bounds. Note that these bounds must be calculated
for each candidate of the ready-list.

Many scheduling techniques are restricted to basic blocks, i.e., the schedulers
are not able to schedule across the border of a loop body or a conditional blocks.
There are only a few exceptions, for example, path-based scheduling [16]. How
ever, path-based scheduling uses operation chaining extensively, which makes
it ill-suited in this case. Since loop folding is done prior to scheduling as a
behavioral transformation, scheduling beyond basic blocks is only required for
conditional blocks. A vector concept [171 has been implemented, which dynam
ically calculates a condition vector for each operation. This vector reflects the
condition under which an operation is executed. The vectors permit calculating
the exact minimum number of CBBs in each control step, taking into account
all types of mutual exclusiveness, both implicit and explicit.

The example in figure 11 illustrates this concept. Assume that each addition
needs one cycle and that only one adder-CBB is available. At first glance it
seems that four cycles are necessary to execute this piece of code, since there are
data dependencies (AI, A2) and (A3, A4). However, a more detailed analysis
of data dependencies shows that a solution with three cycles is possible: since
the results of A2 and A3 are never used simultaneously, the two operations
are mutually exclusive. The same is true for A4 and A5. Under the assump-

www.manaraa.com

186

cycle t:

cycle 2:
cycle 3:

At
(A2,A3)
(A4,A5)

CHAPTER 8

Figure 12 Scheduling result of example given above.

tion that the value of condition is already known, the schedule of figure 12
results. Obviously the scheduler is able to make decisions beyond basic blocks;
thus, throughput is further increased. The result of this phase is a scheduled
microcode, the vector information, and lifetime values which are fed into the
binder.

2 Binding

In addition to the scheduling results, the binding phase receives loop informa
tion and information on arrays to be mapped into the CBB-FIFOs. The goal of
binding is to map operations onto CBBs, transfers onto bus-segments/switching
matrices, and assignment of variables to actual memory locations. The bottle
neck in the binding phase is the programmable routing network, which imposes
hard restrictions. Binding is separated into five steps:

• First, operand collisions are resolved. Operand collisions emerge if two
CBB results are written into the same operand memory at the same time.
If collisions cannot be resolved by exchanging operands (through exploita
tion of operation commutativity), it is guaranteed that the corresponding
operations are mapped onto different CBBs.

• In the next phase, the scheduled flow graph is partitioned, i.e., all opera
tions belonging to one partition are mapped onto the same CBB. In this
step, the vector information of the scheduler is used to take into account
mutually exclusive operations.

• After partitioning, interconnection binding is carried out. This process
tries to avoid interconnection binding deadlocks. The goal is to trans
fer CBB results on one horizontal bus, i.e., the corresponding variable
should be used at the same operand position by all successor operations.
In addition, the number of transfers on each bus system is balanced in
every control step. A heuristic has been developed, which is similar to the

www.manaraa.com

Synthesis for mechatronic applications 187

Kernighan-Lin algorithm [18]. This heuristic exploits operation commuta
tivity in order to align operands.

• Next, a linear CBB assignment is done, Le., the CBBs are assigned to
the different slots of the ASIC emulator board. This assignment is crucial
for reducing the total interconnection cost. Since the number of CBBs
is limited to four, an enumeration process is acceptable. The host- and
process-interface CBBs are fixed in their positions; thus, only 24 permu
tations result. For each permutation, the costs of the switching matrix
and multiplexors are calculated. In a post-optimization phase, switching
matrix costs are reduced by moving groups of transfers between cliques.
Many of these permutations fail in the target architecture, i.e., the re
quest for switching matrices exceeds the hardware of the ASIC emulator.
The feasible permutation with the lowest cost function is selected as final
assignment.

• Finally, memory binding is done, Le., the variables and arrays are mapped
onto the DP-RAMs and FIFOs.

Partitioning, linear CBB assignment, and memory binding are modeled as
weight-directed clique partitioning problems. An improved version of the Tseng
heuristic [19] has been implemented to solve them. The edge weights of the
compatibility graphs are tuned towards the target architecture as much as pos
sible.

When binding is finished, all information is available for programming CBBs
and state machines. The ASIC emulator can be customized and control code
can be generated. In order to keep the controller complexity as low as possible,
all loops are unrolled at the end of binding. This procedure is justifiable, since
the size of the ASIC emulator has no relation to the final ASIC implementation.
Note that the goal is to get some performance indications with this board.

6 RESULTS

The presented approach has been successfully tested on some high-level syn
thesis benchmarks. Although the fifth order elliptic filter benchmark is not
representative for the investigated application domain, it was submitted to the
synthesis system, mainly for testing the synthesis flow. The example could be
mapped successfully onto the emulator board, and the scheduling results are
comparable to the best reported in literature.

www.manaraa.com

188 CHAPTER 8

Allocation

1 ALD, 1 multiplier, 1 shifter
p [i]. bvl [i]

Results

#SMstatic

#SMdynamic
Bus segments
Registers
Cycles
Evaluation time
Multiplier occupation
ALU occupation
Shifter occupation
Parallelism (2 CBBs)
Parallelism (3 CBBs)

4
8

14
16 + 2·128

1,294
0.258 ms

100%
50%
60%
90%
20%

Table 2 Results of DHRC example after mapping onto the ASIC emu
lator board. SMstatic are static connections which do not change during
runtime. S M dynamic are dynamic connections.

Table 2 shows the results achieved for the DHRC benchmark. The total execu
tion time on the emulator board is 1,294 cycles. This throughput could only be
achieved for the folded graph. Without folding, the algorithm required 1,810
cycles, since hardware utilization was very poor.

Both versions of the state variable filter as well as the volume stream measure
ment benchmark could be mapped onto the board.

As already mentioned, the combustion engine benchmark could only be submit
ted for testing high-level synthesis transformations, which was very interesting
since the background memory is complex and intricate. The results achieved
had been very good. The initial specification comprised 37 arrays, which were
finally reduced to 4, realized as FIFOs. This is comparable to a solution found
by a skilled designer.

The volume stream measurement benchmark could also be mapped onto the
board. Mutually exclusive operations are available in this example and were
exploited by the scheduler.

www.manaraa.com

Synthesis for mechatronic applications

7 CONCLUSION

189

In this chapter, the application of-high level synthesis techniques within a rapid
prototyping environment for real-time medium-throughput systems has been
presented. A synthesis scheme has been discussed, which supports the auto
matic mapping of single process algorithms specified on a behavioral level in
HARDWAREC onto a highly multiplexed ASIC emulation board. New efficient
techniques have been presented to solve the corresponding synthesis tasks. Ex
amples demonstrate the efficiency of the approach.

REFERENCES

[1] P. Michel, U. Lauther, and P. Duzy, editors. The synthesis approach to
digital system design. Kluwer Academic Publishers, 1992.

[2] D. Gajski, N. Dutt, A. Wu, and S. Lin. High-level synthesis. Kluwer Aca
demic Publishers, 1992.

[3] G. Rzevski. Mechatronics at the Open University. In Proc. of the 24th
International Symposium on Automotive Technology and Automation
(ISATA), Florence, pages 15-22, May 1991.

[4] M. Srivastava, J. Sim, and R. Brodersen. Hardware and software proto
typing for application-specific real-time systems. In Proc. of the 2nd Int.
Workshop on Rapid System Prototyping, Research Triangle Park, June
1991.

[5] H. Herpel, N. Wehn, and M. Glesner. RAMSES-a rapid prototyping en
vironment for embedded control applications. In Proc. of the Second Int.
Workshop on Rapid System Prototyping, Research Triangle Park, June,
1991.

[6] G. DeMicheli and D. Ku. HERCULES-a system for high-level synthesis.
In Proc. of 25th DAC, Anaheim, pages 483-488, Jun 1988.

[7] M. Potkonjak and J. Rabaey. Optimizing resource utilization using trans
formations. In Proc. of the ICCAD, Santa Clara, pages 88-91, 1991.

[8] P. Windirsch, H. Herpel, A. Laudenbach, and M. Glesner. Application
specific microelectronics for mechatronic systems. In Proc. of EURO
DAC'92, Hamburg, pages 194-199, Sep 1992.

[9] A. Laudenbach and M. Glesner. VLSI system design for automotive con
trol. IEEE Journal of Solid-State Circuits, JSSC-27, number 7, pages 1050
1056, Jul 1992.

www.manaraa.com

190 CHAPTER 8

[10] P. Pochmiiller and M. Glesner. Memory management as a high level syn
thesis transformation. In ASIC 92, Rochester, pages 166-169, Sep 1992.

[11] G. Goossens, J. Vandewalle, and H. De Man. Loop optimization in register
transfer scheduling of DSP systems. In Proc. of 26th DAC, Las Vegas,
pages 862-831, Jun 1989.

[12] P. Pochmiiller and M. Glesner. Force directed loop folding. ITG
Fachbericht 122, VDE-Verlag, pages 135-146, Nov 1992.

[13] P. Paulin and J. Knight. Force-directed scheduling for the behavioural
synthesis of ASICs. IEEE Transactions on CAD of Integrated Circuits and
Systems, CAD-8, number 6, pages 661-679, Jun 1989.

[14] N. Wehn, H. Herpel, T. Hollstein, P. Pochmiiller, and M. Glesner. High
level synthesis in a rapid-prototype environment for mechatronic systems.
In Proc. of EURO-DAC'92, Hamburg, pages 188-193, Sep 1992.

[15] M. Potkonjak and J. Rabaey. A scheduling and resource allocation algo
rithm for hierarchical signal flow graphs. In Proc. of the 26th DAC, Las
Vegas, pages 7-12, Jun 1989.

[16] R. Camposano. Path-based scheduling for synthesis. IEEE Transaction on
CAD, CAD-10, pages 85-93, Jan 1991.

[17] K. Wakabayshi and T. Yoshimura. A resource sharing and control synthesis
method for conditional branches. In Proc. of the ICCAD, Santa Clara,
pages 62-65, 1989.

[18] K. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graph. Bell System Technical Journal, 49, number 2, pages 291-307, Feb
1970.

[19] C. Tseng and D. P. Siewiorek. Automated synthesis of data paths in digital
systems. In IEEE Transactions on CAD, CAD-5, number 3, pages 379
395, Jul 1986.

www.manaraa.com

9
SYNTHESIS FOR

CONTROL-FLOW-DOMINATED
MACHINES

Kevin O'Brien, Inhag Park
Ahmed A. Jerraya, Bernard Courtois

TIM3/INPG, Grenoble

ABSTRACT

This chapter presents AMICAL, an advanced, high-level synthesis system tar
geted toward control-flow-dominated machines. It interfaces well with existing
design environments and methodologies. Starting with a pure VHDL input,
AMICAL produces a full specification for existing logic and RTL synthesis tools.
It also allows the re-use of existing components within new designs (external
library of macros). In addition, AMICAL uses a powerful scheduler and accepts
a comprehensive VHDL subset (multiple waits, nested loops, exits, procedures,
functions, etc) .

.The combination of automatic and manual synthesis allows a quick and broad
exploration of the design space in real time. The response time of AMICAL
is very short, making it a genuine interactive system. Several large examples
have already been used for AMICAL evaluation with excellent results, includ
ing a telephone answering machine controller, which is used as an illustrating
example in this chapter.

1 INTRODUCTION

After the success and the widespread acceptance of logic and register-transfer
level (RTL) synthesis, the next step is micro-architecture synthesis, commonly
called behavioral synthesis or high-level synthesis. This chapter presents an
advanced, high-level synthesis system called AMICAL that is targeted toward

191

www.manaraa.com

192

!
"RTL description

(VHDL, VERILOG)

AMICAL

t
Macros

Libraries

CHAPTER 9

f
Behavior
(VHDL)

Figure 1 A global view of AMICAL.

control-flow-dominated machines. AMICAL starts with a functional specifica
tion, given in VHDL, and generates an architecture, composed of a data-path
and a controller, that may feed existing synthesis tools acting at the logic and
register-transfer level. It also allows the re-use of existing components within
new designs (through an external library of macros).

As shown in figure 1, behaviorai synthesis starts with two kinds of information:
a behavioral description and an external library of functional units (FUs). The
external library of FUs may include standard execution units (adders, multipli
ers, ALUs, etc.) as well as more complex units defined by the designer. These
may be large, complex blocks such as cache memories, I/O units, and so on.

AMICAL is organized as an interactive environment where automatic and man
ual synthesis can be mixed. The combination of automatic and manual syn
thesis allows a quick and broad exploration of the design space in real time.
Furthermore, AMICAL provides many facilities for analyzing the generated ar
chitecture (such as statistics, evaluation, and links between the VHDL behav
ior and the architecture). Several large examples have already been used for
AMICAL evaluation with excellent results.

The rest of this chapter concentrates on the methodologies and the underly
ing concepts behind the development of AMICAL rather than the individual
algorithms. Details about the algorithms used by AMICAL can be found in
literature [13, 12, 14].

The chapter is divided into six sections. The next section deals with inter
facing high-level synthesis tools and existing CAD environments. Section 3
gives a global presentation of AMICAL. The input specification, the synthesis

www.manaraa.com

Control-flow-dominated machines 193

environment, and the design flow are presented. Facilities for mixing manual
and automatic design are explained in section 4. Section 5 discusses the need
for specific algorithms in order to synthesize control-flow-dominated machines.
We also show the application of this approach to the design of a large cir
cuit, namely a telephone answering machine controller. Section 6 provides an
evaluation of the system and some conclusions.

2 INTEGRATION WITH EXISTING DESIGN

ENVIRONMENTS

Although behavioral silicon compilation has made large strides toward the au
tomation of VLSI design [3, 9], the use of such systems is currently very limited
in industrial environments. The main problems are:

• The lack of integration within existing design methodologies.

• The lack of integration within existing CAD environments.

AMICAL'S solution to the first problem consists of mixing manual and automatic
design within an interactive, high-level synthesis environment. This approach
will be detailed in the following sections. The rest of this section explains
how the use of VHDL eases the integration of AMICAL within existing design
environments. The use of VHDL allows a combination of behavioral and other
description styles and levels for the specification of complex real-time systems.
The use of VHDL packages and procedures also allows us to import existing
macro-blocks into behavioral descriptions.

1 Using existing hardware

Functional units (FUs) are introduced in order to allow the mixing of behavior
and structure. FUs allow the use of existing macro-blocks in the behavioral
specification.

An FU may execute a set of standard operations (which is the case for adders,
multipliers, ALUs, etc.) or new customized operations introduced by the user.
An FU may be a large complex block such as a cache memory or an I/O unit.
It can be called from within a behavioral description in order to perform a

www.manaraa.com

194 CHAPTER 9

rw

dataout

(FU RAM

(Area 25000) (Width 250) (Height 100)

(Parameter (Dataln a b) (DataOut c))

(Connector

(Dataln address datain (Bit 0 8))

(DataOut dataout (Bit 0 8))

(Controlln rw (Bit 0 2»))

(opType read

(Cycle 1

(Active rw 1)

(Transfer a address))

(Cycle 2

(Transfer dataout c))

(Optype write

(Cycle 1

(Active rw 2)

(Transfer a address)

(Transfer b datain))))

datain

(~_M~)
RAM

RAM

B : out integer);

Procedure write(A,B : in integer;

RAM: in memory);

RAM: in memory;

Procedure read(A : in integer;

Type memory is array (0 to 3199) of integer;

Signal RAM : memory;

PACKAGE RAMJu is

end RAMJu;

Figure 2 Different FU abstractions. From top left: the conceptual
view, the behavioral view, the RTL view, and the high-level synthesis
view.

given operation. It can accept and return parameters. In terms of hardware,
it allows us to create partial designs that can easily be introduced into new
systems [14, 15].

An FU can be specified at different levels of abstraction, as shown in figure 2. In
this example, a register file called RAM is described. From a conceptual point of
view, the register file is an object able to execute two operations (Read, Write)
which share some data (M). At the behavioral level, the FU is described with
a VHDL package that includes two procedures specifying the execution details
of the operations. This may be a complex behavior. The FU may correspond
to an existing macro-block that has already been synthesized or described at
the RT level. The RTL view is an external view of a possible realization of
the register file. It is connected to two inputs (address, datain), one output
(dataout), and one command (rw) that selects the procedure to execute.

www.manaraa.com

Control-flow-dominated machines

AMICAL

1 1 1
/ /

RTL description Macros Behavior
(VHDL, VERILOC) Libraries (VHDL)
'- / '- / '- /

RTL simulation Macros System-level

RTL synthesis (exisiting hardware) simulation
& synthesis

Existing CAD environment

Figure 3 Integrating AMICAL within existing CAD environments.

195

The high-level synthesis view of the FU summarizes the behavioral and RTL
views. It includes:

• The interface of the FU.

• The FU's call parameters (which correspond to procedure parameters).

• The operation set executed by the FU.

• The micro-schedule for each operation.

The synthesis environment can contain a library of such FUs. The designer
invokes an FU through a simple procedure call. FUs can be of any degree of
complexity and can themselves be the result of a synthesis process.

2 Linking AMICAL to existing tools and methodologies

The interaction between AMICAL and existing CAD environments is shown in
figure 3. Starting from a behavioral description, AMICAL performs the normal
high~level synthesis steps (scheduling, allocation, etc.) and generates an RTL
structure composed of two subsystems: a data-path and a controller. Such a
design can be realized by the following four steps:

www.manaraa.com

196 CHAPTER 9

• System level specification and verification.

• Architectural exploration and behavioral partitioning.

• Micro-architecture generation.

• RTL synthesis (RTL and layout synthesis environments).

Only the second and third steps are performed by AMICAL. The first and the
fourth steps must be performed by the environment.

For the first step, the design is specified at the system level. This specifica
tion may be part of a complex system or a complete design. The specification
should be verified through system-level simulation. The results of the simula
tion will be used during subsequent steps for architecture exploration. Another
verification option would be to use formal techniques such as those described
in chapter 2. Although these techniques have primarily been developed for the
ASCIS DFG and AMICAL concentrates on control flow graph descriptions, a
large subset of VHDL (PROCVHDL, described in section 3 of chapter 2) can be
modeled by the ASCIS DFG. The comparison of formal verification and exhaus
tive simulation is not relevant to this chapter. Through the ASCIS project, we
have both options open to us.

Once the behavioral description and the FU library are ready, AMICAL can be
used for architectural exploration and synthesis. This step includes scheduling
and allocation. The behavioral description is partitioned into a data-path and
a controller. The synthesis can be carried out automatically, manually, or
by a combination of both approaches. The automatic synthesis produces the
fastest architecture according to the input description. This architecture may
be manually modified in order to reduce the number of allocated FUs and
busses (see section 4).

The third step produces an RTL specification. It proceeds in two steps: the
first produces an abstract architecture, and the second customizes this output
for a given RTL synthesis and logic environment. The customization process is
programmable. It provides facilities such as handling different clocking schemes
and different VHDL styles.

Once the new VHDL specification of the architecture is generated, a validation
step is needed. This step mainly involves simulating the generated descrip
tion. This post-architecture-svnthesis simulation may be used to carry out a
detailed performance analysis of the architecture (for example: the number of

www.manaraa.com

Control-flow-dominated machines 197

clock cycles needed to perform a given computation). Such a simulation can
also be used to check the correctness of the synthesis process. This step also
includes RTL and logic synthesis. For the controller synthesis and verification,
techniques such as those described in chapter 10 can also be useful.

3 AN OVERVIEW OF AMICAL

This section gives a global view of the AMICAL system. More details about the
algorithms used by AMICAL can be found in the literature [13, 12, 14].

1 User interaction

AMICAL is organized as an architectural synthesis environment. It works as a
design assistant, combining automatic, manual, and interactive synthesis.

The designer interacts with the system through a mouse and a graphical inter
face. AMICAL'S user interface consists of three windows:

• Control window (top): generally used to show and edit the controller.

• Data-path window (middle): used to show and edit the data-path.

• Information window (bottom): used to print information and error mes
sages. It also provides information about the progress of the synthesis
process (last command, synthesis step, contents of the other windows,
etc). This information is needed in order to help the user during long syn
thesis sessions. This window also shows the synthesis mode (automatic,
interactive, or manual).

As we shall see in the rest of this chapter, one of the main strengths of AMICAL

is its ability to maintain the coherence between the information included in
these three windows, in other words, the different aspects of the design.

Figure 4 shows a screen dump that gives a flavor of AMICAL at work. The
right-hand window shows a VHDL description of the algorithm being synthe
sized. The top window contains the transition table generated by the scheduler.
The middle window shows the data-path, as synthesized by AMICAL. The bot
tom window provides information on the current status of AMICAL. We make
use of concepts similar to those used in CORAL II [1] in order to link the be
havior and structure. In this way, AMICAL is able to maintain the coherence

www.manaraa.com

198 CHAPTER 9

3

(Stat.e SI) (No><tStato SI) (Coodition (& (/= rot 0»)

(Slato 52) (NoxtStato S2) (ConditIon (& (/= x y) « x y»)
(y)(=-(y, x)

(Stat. 52) (N.xtStato S2) (Conditton (& (/= x y) p= x y»)
(x)(=-(x, y)

(Stato 52) (NoxtStato SI) (CondItIon (& (= x y»)
(ou)(=out(x)

FILENANf: gcd.vhdJ.

• entity gcd I.
port he1, y1 : tn integer;

r.t : tn bit;
au : out f nteger) ;

end oed;
Il"'chitecture behavior of gcd h
b'gin

process
variable H,y: tnteger;

bogln
... It unlll (rot = '0');
)(:= xi;
y := yi;
wh11. (x 1= y) loop

if (x (y)
then y:=y-)(;
e1$e x::x-Yi

end H;
end loop;
OU <= Hi

end procell;
.. end behavior;

Control atop <2>. CQotIAHO : INFO_TION -> 81NOING
Stale: Allocaled. 2 operattons (0 lransfers, 2 operations, 0 oppel) SYNTHESIS STEP: AllocatIon of c"",,"ctions Is

MOOE: AlITOMATIC 0 INTERACTIVE OMAIlUAL

Figure 4 Screen dump of AMICAL at work.

between the information contained in the three main windows. For example,
the designer may require information concerning the correspondence between
the controller and the data-path. In figure 4, we have asked for information
about the resources used for the execution of the two parallel operations in tran
sition 2 of the controller representation (highlighted in top window). AMICAL

has highlighted the appropriate data-path components in the middle window.
The resources highlighted by AMICAL include not only the registers and func
tional units necessary for storing the variables and executing the operations,
but also the busses and switches used in transferring the variables to and from
the functional units. More information about the control step is given in the
bottom window. The interaction with the user is similar to the MIES system
[lOJ.

Starting from a behavioral-level VHDL description, the designer has the op
tion of synthesizing entirely automatically, proceeding manually, or combining
automatic and manual steps in a true interactive mode. This philosophy of al
lowing the designer to influence the synthesis process as much as desired makes
AMICAL a true computer-aided design tool. The various synthesis tasks in the
AMICAL design flow are briefly outlined in the following paragraphs.

www.manaraa.com

Control-flow-dominated machines

2 Input specification

199

As stated above, the compilation process starts with a behavioral specification
given using a VHDL subset. The specification consists of an entity/architecture
pair, with the architecture limited to a single process statement. The VHDL
subset used is slightly different from that used by PROCVHDL in order to ac
commodate properties of control-flow-dominated circuits. The main difference
is that some restrictions of PROCVHDL concerning loops, loop exit statements,
and wait statements have been removed.

The system uses a library ofFUs similar to the application-specific units (ASUs)
used in CATHEDRAL-3, which is described in chapter 7 [l1J. In CATHEDRAL-3,
the ASUs are extracted automatically from the behavioral description. This
is important for high-throughput real-time signal processing applications that
require complex application-specific data-paths, as targeted by CATHEDRAL-3.
Within AMICAL, the FUs are provided by the user. Even if this approach is
less automatic, it provides more flexibility when using existing hardware.

Accesses to arrays and ports are automatically converted to functional unit
calls. For example, suppose we have an FU named ram, described in VHDL
as an array (thus it is represented as a memory device in hardware, the array
index being the address). Assignments to ram in the initial description would
then be replaced by WRITE requests, and if ram was used as an operand in
some operation, this would be replaced by a READ function. For our control
flow-dominated target domain, we have chosen to realize the memory access as
implied by the VHDL description. No memory-oriented loop optimizations, as
addressed in chapter 7 and 8, are foreseen here.

3 Scheduling

AMICAL uses a dynamic loop scheduling algorithm [13, 12]. This algorithm is
adapted to control-flow-dominated designs written in VHDL, and is a develop
ment of the path-based approach proposed by Camposano [2J. Essentially, the
scheduler reads in a VHDL description and produces a behavioral FSM in the
form of a transition table. Each transition (macro-cycle) corresponds to the
execution of a control step under a given condition. A macro-cycle may need
several basic cycles (clock cycles) for its execution. The top left window in
figure 4 shows the transition table composed of two states and five transitions.

The default option is that all the operations of a transition are executed in
parallel. This schedule may be modified manually during an extra chaining step.

www.manaraa.com

200 CHAPTER 9

Chaining implies the serialization of operations in the same control step. It is
used, for example, when the initial schedule generates a control step containing
too many parallel operations, requiring a lot of FUs to execute them. Chaining
is carried out interactively.

4 Architecture synthesis

After scheduling, architecture synthesis starts with two kinds of information,
namely the scheduled description and an external library of functional units.
The resulting architecture is bus-based. The default option is that there is no
limitation on the number of busses. The architecture synthesis involves four
steps [15]:

• Functional unit allocation: associates an FU with each operation in the
state table.

• Micro-scheduling: generates the micro-schedule according to the execution
scheme given for each operation (given in the FU specification). Each
operation is decomposed into a set of transfers. Each micro-cycle contains
a set of parallel transfers that take one basic clock cycle to execute.

• Component placement: places the registers and FUs in order to reduce
the connections. Because AMICAL uses a bus-based target architecture,
the placement of registers and functional units is very important. Optimal
placement will minimize the number of busses necessary.

• Connection allocation: produces the bus structure. For each transfer, a
set of connections containing wires, switches, and busses must be allocated
in such a way that parallel transfers do not use the same resources. The
efficiency of the result of this step largely depends on previous synthesis
steps.

FU allocation is based on an EMUCS-like algorithm [5]. Micro-scheduling uses
an ASAP algorithm. Component placement and connection allocation make use
of improved constructive approaches similar to those used in APOLLON [6].
The originality of the approach is that all of these algorithms are implemented
in order to allow mixed manual and automatic design. With the exception of
micro-scheduling, they all use a constructive approach. At each step, a new
element is allocated or placed. The four steps may be sequenced automati
cally or performed step by step. Each step may be executed automatically,
interactively, or manually.

www.manaraa.com

Control-flow-dominated machines 201

(State 514) (NeKtState 516) (Condition (& «= i size)))
ram(read(i)(tl» / (validout)(=out(l)

t 25/1 i -} a~_FU_l /

; 25/2 odata_FU_l -} tl /

Figure 5 The data-path generated automatically for the bubble-sort
example.

Figure 5 shows the data-path generated automatically for a bubble-sort example
[15]. The top window shows the detailed micro-scheduling of control step 25.
According to the corresponding FU description, each operation is split into a
set of transfers related by precedence constraints (lines in the the top window).
In this case, the READ ram operation needs two micro-cycles for execution.
The micro-scheduling of this control step resulted in two micro-cycles (basic
clock cycles).

5 Architecture generation

The output of AMICAL is a structure composed of two subsystems: a data
path and a controller. This RTL specification is generated in two steps. The
first produces an abstract architecture coded in an intermediate form called
SOLAR [7]. In order to reach silicon, this abstract architecture needs to be
refined in order to include a synchronization scheme (clocks, resets) and other
characteristics such as testing. This refinement produces a detailed architecture
specification. During the last step, glue cells may be inserted. For example,
a synchronization block may be included anywhere in the circuit hierarchy, if
such a personalized scheme is needed. This may be useful in the case of a

www.manaraa.com

202 CHAPTER 9

circuit that uses a single external clock signal and includes a clock generator
that produces internal clock signals.

The final output of AMICAL is a netlist composed of a control unit and a data
path. The data-path is itself a netlist. The controller is an FSM description
that can be fed to an FSM synthesizer such as that described in chapter 10.

4 MIXING MANUAL AND AUTOMATIC DESIGN

The classic behavioral synthesis design methodology consists of three funda
mental steps: scheduling, allocation, and architecture generation. There is
much controversy over the ordering of the first two steps. AMICAL compro
mises by providing an initial schedule and allowing the designer the freedom
to mix manual and automatic modes in order to complete the design. This
section describes the facilities provided by AMICAL in order to ease the mixing
of manual and automatic design.

Interaction modes

Mixing manual and automatic design can be performed through two modes: a
true interactive mode and a manual modification of automatic synthesis mode.
All allocation algorithms are iteratively constructive, allowing the user to in
tervene at each iteration, to modify the results or to cancel them completely.
The scheduling tasks (scheduling and micro-scheduling) are performed auto
matically. The designer can manually modify the results of the schedule.

Linking the controller and the data-path

An important feature of AMICAL is maintaining links between the initial VHDL
description, the transition table, and the data-path. These links simplify the
control of the design process when manual and automatic design is mixed.
Through the information submenu, the user may ask for relationships between
the synthesized structure and the scheduled description (see also section 3).

Verification junctions

For each task there are, of course, certain rules that must be adhered to. For
all manual and interactive interventions, a verification is automatically carried
out by AMICAL. Only functionally correct changes are accepted. For instance,

www.manaraa.com

Control-flow-dominated machines

(Evaluation of the synthesized data-path

(Allocated FUs (number: 5) (area 33900.00)

(Allocated FU <FU_1> == <ram> (area: 25000.00»

(Allocated FU <FU_2> == <10> (area: 2000.00»

(Allocated FU <FU_3> == <10> (area: 2000.00»

(Allocated FU <FU_4> == <ALU3> (area 3100.00»

(Allocated FU <FU_5> == <SUB> (area: 1800.00»

(MAXJ[UHBER 10) (WEIGHT 1)

(ESTIMATION on FU allocation: SUCCESS»

(Allocated connections (area 113120.00)

(Allocated busses (number: 4)

(BUS_1 <BUS_L1> <BUS_1-2»

(BUS-2 <BUS_2_1> <BUS-2-2»

(BUS-3 <BUS_3_1»

(BUSA <BUSA_1»

(MAXJ[UHBER 3) (WEIGHT 10)

(ESTIMATION on bus allocation FAIL»)

203

(Scheduled micro-cycles (number: 33)

(MAXJ[UHBER 100) (WEIGHT 1)

(ESTIMATION on micro_cycle scheduling

(FINAL-ESTIMATION : FAIL»

SUCCESS)

Figure 6 Evaluation file for bubble-sort data-path.

during allocation steps, only correct bindings are accepted. During manual
modification of the scheduling, transformations that violate data dependencies
are not accepted.

Evaluation junctions

AMICAL also provides several evaluation functions aimed at on-line evalua
tion of the synthesis tasks already executed. This evaluation summarizes the
hardware allocated as well as verifying that certain constraints have been met.
Figure 6 shows an extract of the evaluation file corresponding to the architec-

www.manaraa.com

204

(Statistics of the synthesized data-path

(FUs (Total Number: 5)

(Name FU_1 (Active Cycle 19 (Rate 57.58%»)

(Name FU-2 (Active Cycle 6 (Rate 18.18%»)

(Name FU_3 (Active Cycle 2 (Rate 6.06%»)

(Name FU_4 (Active Cycle 9 (Rate 27.27%»)

(Name FU_5 (Active Cycle 1 (Rate 3.03%»»

(Bus (Total number: 6)

(Name BU5_L1 (Active Cycle 13 (Rate 39.39%»)

(Name BU5_1-2 (Active Cycle 33 (Rate 100.00%»)

(Name BU5_2_1 (Active Cycle 7 (Rate 21.21%»)

(Name BU5_2-2 (Active Cycle 11 (Rate 33.33%»)

(Name BU5_3_1 (Active Cycle 9 (Rate 27.27%»)

(Name BU5A_1 (Active Cycle 3 (Rate 9.09%»»)

Figure 7 The statistics file corresponding to figure 5.

CHAPTER 9

ture shown in figure 5. We can easily see that this architecture includes five
FUs and four busses organized into six segments. The controller correspond
ing to this architecture includes 33 micro-cycles. Statistics about the use of
resources are also provided (figure 7). These are the results of static analysis.
The statistics file provides the number of cycles where each resource is used.

For complex designs, these feedback files provide useful indications that may
guide the designer's decisions. For example, in figure 6, we note that the number
of busses allocated has exceeded the imposed maximum. In order to reduce the
number of busses, we can perform some manual micro-scheduling to remove
some of the parallel transfers.

5 A DESIGN EXAMPLE

This section deals with the design of a complex control-flow-dominated circuit,
namely a controller for a telephone answering machine. The main character
istics of this design include real-time constraints and synchronization, nested
loops, and emergency exits from loop hierarchies. Figure 8 shows a block di
agriUll of the answering machine. This example is based on the answering
machine proposed by Vahid and Gajski [16].

www.manaraa.com

Control-flow-dominated machines

I------ Deck 1 I---
L.......

AID I- Controller I------ Deck 2 I--

P
--0

.......... Timer I----.-
\..

Figure 8 Telephone answering machine block diagram.

OffHook
Timeout

205

Ring=3

Hangup
KeyPressed=8

Figure 9 StateChart-like model of answering machine controller.

The answering machine consists of five principal blocks: an AID converter,
two tape decks, a timer, and a controller. It is this last block that will be
used to demonstrate the capability of AMICAL to deal with large control-flow
dominated designs. Figure 9 shows a StateChart-like model [4] of the tele
phone answering machine controller. The entry state of the system is the state
Wait-For_A_Call. When three rings have been received from the telephone ex
change, a transition to the state OffHook is made. In this state, a pre-recorded
message is delivered and the caller can continue or hang up. If the caller
hangs up at any stage during the process, an immediate transition to the state

www.manaraa.com

206 CHAPTER 9

Synthesis FUs Buses Bus Control Micro-cycles
operations segments signal

switches

Automatic 6 6 8 83 50
synthesis
After re-scheduling 3 4 7 61 73
After re-scheduling
and micro-schedule
optimization 3 3 3 44 89

Table 1 Summary of different solutions for the answering machine con
troller obtained using AMICAL.

WaiLFor-A-Call must be made. A similar transition is made if any of the
timeout restrictions is not adhered to.

The controller is modeled as a single VHDL process containing seven nested
loops organized in the hierarchy shown in figure 10. The VHDL code required
to implement the GeL3_Digits loop is shown in figure 11. During the execution
of any of these loops, if there is a global exception (the caller hangs up, for exam
ple), the loop hierarchy must exit and control be passed to the WaiLFoT_A_Call
loop. The VHDL subset used permits us to use loop exit statements to imple
ment global exceptions. After each wait statement, all global exceptions are
tested.

The full description contains 180 lines of VHDL code. An initial scheduling
produces a transition table containing 22 states and 67 transitions. Some of
these transitions include up to six parallel operations (transfers, arithmetic
operations, and memory accesses), implying eight parallel transfers. After a
full automatic synthesis session, the solution produced is summarized in row 1
of table 1. This is the fastest solution in terms of the number of micro-cycles.
For this application, however, we can afford to trade off some of the speed
against data-path resources. Therefore, to improve this design, it is necessary
to perform scheduling and micro-scheduling modifications.

An evaluation showed that three of the FUs allocated were I/O units. The
initial schedule produced 17 transitions containing two parallel I/O operations
and six transitions containing three parallel I/O operations. Are-scheduling
step was performed in order to eliminate two I/O units. The resulting solution

www.manaraa.com

Control-flow-dominated machines 207

(LOOP behavior --implicit process loop
(LOOP WaitJror-A_Call

(LOOP Get-3..Rings))
(LOOP OffHook

(LOOP Remote
(LOOP Get-3..Digits)
(LOOP ManuaIControl))))

Figure 10 Loop hierarchy of the controller.

Get_3..Digits: LOOP
WAIT UNTIL (KeyPressed = 0);
Timeout := functional unit..REM(ElapsedTime,20)
WAIT UNTIL ((ElapsedTime=Timeout) OR (KeyPressed/=O)

OR (HangUp = '1'));
IF CCHangUp = '1') OR CElapsedTime = Timeout)) THEN

EXIT OffHook ;
END IF;
NextDigit := PasswdROM(DigitCount);
IF (KeyPressed /= NextDigit) THEN

FalsePasswd := '1';
END IF;
DigitCount := DigitCount + 1;
IF (DigitCount = 3) THEN

EXIT Get_3..Digits;
END IF;

END LOOP Get_3..Digits;

Figure 11 VHDL code segment of the controller.

www.manaraa.com

208 CHAPTER 9

-L (1_ Tlt1:'_ l ll ""I'_ol 1,:,,_-- :"JI-[.:.n11 ':'L: L - [~:,:,.j ,',,, .1 [L

'ifir---'-'-~=---'-'-'-'---"~gj

Figure 12 Final optimized data-path for the answering machine.

is summarized in row 2 of table 1. This transformation caused the number
of micro-cycles to increase by 23, which we have decided is an acceptable side
effect. The number of busses, however, is still very high (four busses organized
into seven segments).

In order to save connections, a manual modification of the micro-scheduling was
performed. The resulting solution is shown in row 3 of table 1. The synthesized
data-path is shown in figure 12. The final data-path included only three busses
with no cuts.

In table 1, the fifth column shows the number of switches necessary for the
control of the data-path. These switches correspond to control bits coming
from the controller. We can note that resource saving has implied a reduction
in the number of switches (from 83 to 44). This reduction partly offsets the
increase in the controller size due to the increase in the number of micro-cycles
(from 50 to 89).

The response time of AMICAL is reasonably short, making it a genuine interac
tive system. The synthesis speed is a key issue if the designer is to be able to try
different alternatives and obtain the best architecture. None of the compilation
steps corresponding to the examples used in this chapter needed more than 10
seconds on a Sun SPARCstation 2.

www.manaraa.com

Control-flow-dominated machines

6 CONCLUSION

209

In this chapter, the AMICAL compiler, targeted to the synthesis of control-flow
dominated applications, has been described. Most of the common high-level
synthesis benchmarks have already been compiled with AMICAL. Experiments
have shown that for most benchmarks, the resulting solutions are as good as
or better than those produced in other ways [13, 14]. These solutions can
be obtained by mixing automatic and manual design or by using an automatic
exploration of the design space. These performances also apply to large designs.

Several real-life examples have also been used for AMICAL evaluation. The
most complex is a programmable waveform generator. The design is composed
of four modules. The largest module results in an FSM with 548 states and
1,474 transitions. The compilation of this block takes less than one minute on
a Sun SPARCstation 2.

The short response time of AMICAL is crucial for design productivity. The syn
thesis speed has been considered as a key issue to let the designer try different
alternatives and to get the best architecture. The combination of automatic
and manual synthesis allows a quick and broad exploration of the design space
in real time.

Apart from the integration of AMICAL with an existing logic synthesis tool,
future work includes the generation of other styles of architecture (e.g., mux
based) and to extend the interaction with AMICAL in order to allow micro
architecture simulation [10].

REFERENCES

[1] R. L. Blackburn et al. Coral II: linking behavior and structure in an IC
design system. Pmc. 25th DAC, 1988.

[2] R. Camposano. Path-based scheduling for synthesis. IEEE Trans. on CAD,
CAD-10, number 1, pages 85-93, Jan 1991.

[3] R. Camposano and W. Wolf, editors. High-Level VLSI Synthesis. Kluwer
Academic Publishers, 1991.

[4] D. Harel et al. Statecharts: a working environment for the development
of complex reactive systems. IEEE Trans. on Software Engineering, 16,
number 4, 403-413, Apr 1990.

www.manaraa.com

210 CHAPTER 9

[5] C. Y. Hitchcock and D. E. Thomas. A method of automatic data-path
synthesis. Proc. 20th DAC, paper 31.3, 1983.

[6] R. Jamier and A. A. Jerraya. APOLLON: a data-path silicon compiler.
IEEE Circuits €'3 Devices, May 1985.

[7] A. A. Jerraya and K. O'Brien. SOLAR: an intermediate form for system
level design and specification. CoDes Workshop, Grassau, Germany, 1992.

[8] A. A. Jerraya,1. Park, and K. O'Brien. AMICAL: an interactive high-level
synthesis environment. Proc. EDAC'93, Paris, Feb 1993.

[9] M. C. McFarland, A. C. Parker, and R. Camposano. The high-level syn
thesis of digital systems. Proc. of the IEEE, 78, number 2, Feb 1990.

[10] J. Nestor, B. Soudan, and Z Mayet. MIES: a micro-architecture design
tool. Proc. 22nd International Workshop on Microprogramming and Mi
croarchitecture, 1989.

[11] S. Note et al. Cathedral III: architecture-driven HL synthesis for high
throughput DSP applications. Proc. 28th DAC, 1991.

[12] K. O'Brien, M. Rahmouni, and A. A. Jerraya. A VHDL-based schedul
ing algorithm for control-flow dominated machines. 6th Intl. High-Level
Synthesis Workshop, Dana Point Resort CA, Nov 1992.

[13] K. O'Brien, M. Rahmouni, and A. A. Jerraya. DLS: a scheduling algorithm
for high-level synthesis in VHDL. Proc. EDAC'93, Paris, France, Feb 1993.

[14] 1. Park, K. O'Brien, and A. A. Jerraya. An interactive data-path alloca
tion algorithm. IPIP Workshop on Control Dominated Synthesis from a
Register Transfer Level Description, Grenoble, France, 1992.

[15] 1. Park. AMICAL: Un assistant pour la synthese et l'exploration archi
tecturale des circuits de commande. PhD thesis, INPG, Grenoble, France,
1992.

[16] F. Vahid and D. D. Gajski. Specification partitioning for system design.
Proc. 29th DAC, 1992.

www.manaraa.com

10
CONTROLLER SYNTHESIS AND

VERIFICATION

Kenny Ranerupl, Lars Philipson1

Jan Madsen2 , Ole Olesen2 , Geert Janssen3

1Lund University
2 Technical University of Denmark

3 Eindhoven University of Technology

ABSTRACT

This chapter focuses on synthesis and verification of control units. One of the
key issues in synthesis is the ability to explore the design space. One step
toward design space exploration is the results presented here in control archi
tecture synthesis that enables exploration of a range of control architectures.
Another step is the use of a compiled cell approach to the technology mapping
problem in control unit logic synthesis. The verification of the synthesized con
trol unit is also an important issue. A new approach is presented that, using
a combination of propositional temporal logic verifier and sequential logic ex
traction, has made it possible to verify formally the layout of a control unit
against the specification.

1 INTRODUCTION

One of the goals of building synthesis systems for VLSI design is to allow the
designer to explore a large part of the design space in a short time. The previous
chapters of this book (chapters 7, 8, and 9) have addressed the exploration for
data-path synthesis, but nothing has been said about control unit (CD) design.

The process of designing a CD typically starts with choosing an architecture
suitable for the particular control program at hand. The choice of architecture
can be greatly simplified by the use of algorithms for mapping a control program
onto many CD architectures. This enables an exploration of the architectural

211

www.manaraa.com

212 CHAPTER 10

design space in a way not possible before. The results described in section 2
from this approach show that significant area gains can be achieved.

The second step in CU design is implementation of the architectural compo
nents in an efficient way. Several implementation methods are available today
for the combinational part of a CU, for example, PLA and standard cells. Ac
companied by modern logic synthesis methods, the design space can be explored
in both area and time directions. There are, however, disadvantages with both
PLA and standard cell solutions. The standard cell solution maps onto a fixed
library of cells which restricts the logic synthesis from finding an optimal so
lution. As an alternative to the fixed library, an appealing approach is the
use of cell compilers which are able to generate any logic function as a single
composite gate, i.e., reducing the number of transistors needed to implement
the function. This approach can result in significant area gains compared to
other methods, as described in section 3.

Last but not least, the function of the CU has to be verified. Verification is di
vided into two processes: validating the control program against the designer's
intentions, and verifying that the resulting layout is a correct implementation
of the control program. The complexity of the control program often makes this
a difficult task, and the verification also becomes even more complex as more
and more tools are used that potentially can introduce errors in the resulting
layout. In the left part of figure 1, a typical design flow is depicted, each step
involving complex algorithms.

The only tools traditionally available for functional verification are simulators.
The current practice is to simulate the circuit for a large number of cases.
Unfortunately, it is usually not feasible to simulate exhaustively, i.e., to simulate
for all possible input sequences; hence, only partial correctness of the design is
typically established.

A fundamentally different method of checking correctness is the use of mathe
matical proof techniques for proving the correctness of a design. These methods
do not have to resort to exhaustive simulation to achieve full confidence of cor
rectness. One such method based on propositional temporal logic is described
in section 4. In principle this method can be used to verify a transistor netlist
extracted from the layout against the control program, but in practice this is
not computationally feasible. The problem is that there is too large a gap of
abstraction between the transistor netlist and the control program. One way of
bridging this gap, described in section 5, is to extract an equivalent sequential
logic description from the transistor netlist. Such a description is much more
suitable for verification against the control program.

www.manaraa.com

Controller synthesis and verification

~""""""""""""~ ~"""""""""'~""'~

~ SYNTHESIS ~ State Transition ~ VERIFICATION ~
• • Graph X :
: Control architecturef ;, i

synthesis ~ : Propositional :
~ ~ temporal logic ~
~ ~ verification :• • •
~ : ~
~ ~ :
~ : :
: : Extraction of :
~ . ~
~ • combinational logic •• • •~ : and state registers :
~ ~ ~
~ ~ ~
~ ~ ~

~ . . .
~ : ~ ~· ~ ~ ~
~ ~ • Transi to ill t ~
•
~ • : s rne s :
• ~ extraction •• • Layout-----: " •· . . :
~""""""""""""'~ ~""""""""""""'"

Figure 1 Controller design and verification process.

2 ARCHITECTURE SELECTION

213

Automatic synthesis of control architectures from a program description is a
very important task in order to allow the designer to explore a large part of the
design space with little effort. Until now, such approaches have mainly been
addressed for data-path architectures, as described elsewhere in this book.

Certain parts of the synthesis and optimization of control logic, such as state
assignment, two-level logic optimization, and multilevel logic minimization [11,
6, 5], have been well studied. The general approach for CU synthesis has been
to generate and optimize logic for given, fixed control architectures. For a
given control program, different control architectures can, however, result in
implementations that differ widely in terms of size and speed. Therefore, a CD
synthesis system should be able automatically to map a single CD program onto
a number of architectures and eventually automatically choose an architecture,
optimal for the particular control program at hand, given certain performance
constraints.

Research into such control architecture synthesis has mainly been along two
different approaches:

www.manaraa.com

214 CHAPTER 10

• One approach is based on design experience from CU design and micropro
gramming, where characteristics of different control architectures are well
known. Algorithms for mapping control programs onto some of these ar
chitectures has been developed, using, for example, microprogram counters
[2J and subroutines [23J.

• Another approach involves more general decomposition methods, where a
single CU is decomposed into a set of communicating finite state machines
[12, 14J.

The results presented in this section follow the first approach. The resulting
system allows the designer to explore a range of CU architectures.

1 A range of CD architectures

CU programs are usually expressed as state transition graphs (STGs). In many
CU programs, it is possible to find subsequences that occur in several places
in the STG. Two sequences are identical if and only if they produce the same
output sequences for all possible input sequences. The basic idea of a range of
different architectures is to re-use these state sequences so that only one copy
is needed in the implementation, thereby reducing the area of the CU.

Stack architecture

Subroutines in micro-programmed CUs is one example of how common subse
quences can be re-used. The subroutine calling mechanism can be implemented
in many ways. Saving the calling state on a stack is one possibility. The tra
ditional FSM built with a PLA and D-flipflops can easily be extended with
a subroutine mechanism by replacing the state registers with a stack of state
registers (figure 2).

The return operation in this subroutine mechanism differs from the usual micro
processor type of subroutines in that it returns the FSM to the calling state, not
the state after the calling state. Traversing the STG in figure 2 would therefore
lead to the sequence 1,2,a,b,c,d,2,3. An extra flip-flop is needed to distinguish
between the two outgoing edges of state 2. The extra registers for implement
ing the stack increases the register area, but in many cases the corresponding
decrease in the combinational logic area gives a total area decrease.

www.manaraa.com

Controller synthesis and verification

,,,,,,.,,.
:_---_ .. _-_ .. ~

Stack architecture

,,,,,,,,,, ,
t __ ... _.. ~

Register architecture

215

:----------;
,,
·······,,,,,,,,
: c :, ,
:----Ms- .. -~

I

Decomposed architecture

o

-/start -/ncnt ready/-

~
ready'lcnt

Counter architecture

Figure 2 Target architectures.

www.manaraa.com

216

Register architecture

CHAPTER 10

A similar architecture is based on the observation that it is unnecessary to
save the complete state in a subroutine call. If a subroutine is called from n
different states, only log2 n bits need to be saved to later return to the correct
state. This is accomplished with a register loaded with an identifier when a
subroutine is called. The value of this register determines which state to return
to from a subroutine call. In the STG in figure 2, the subroutine a,b,c,d is called
twice, and therefore one bit is needed to select the correct return state. This
architecture is in many cases more area efficient than the stack architecture,
since the number of registers needed frequently is smaller. However, when
the number of calls to one subroutine is large, the stack architecture is more
efficient.

Decomposed architecture

Another possible way of taking advantage of common subsequences in the STG
is to decompose the STG into two STGs, where one contains subroutines (Ms)

and the other (Mm) contains the main part of the STG (see figure 2). The
subroutine call/return is signaled between the machines by the current state
(CSm , CSs)' It is unnecessary to communicate the entire state between the
machines. As in the register architecture, only a coding of the subroutine states
is needed. In this case a unique coding of the different subroutines is needed
from Mm and only a return signal is needed from Ms. Note that when the
CD is decomposed into two separate machines, some of the logic will be dupli
cated. This can, however, be overcome by optimizing the combinational logic
of the two machines together (see "Decomposed separate" and "Decomposed
combined" in table 1).

Counter architecture

Repetitions of a subsequence is a special case of identical sequences. If a sub
sequence is repeated a large number of times (Le., in the sequence a,b,a,b,a,b,
the sequence a,b is repeated three times), it can be advantageous to replace
the repetitionstate repetition with a loop over the sequence and an external
counter (see figure 2). The counter only counts a fixed number of cycles and
then generates a ready signal. More than one repetition can be replaced in this
way if the counter is extended to allow a number of different cycle counts.

www.manaraa.com

Controller synthesis and verification

FSM Orig area Stack Register Decomposed
p,m2 separate combined

brain 221328 0.86 0.91 1.66 1.48
e84tr-utan 380016 0.60 0.66 1.12 0.99
gammal 335008 0.53 0.50 0.85 0.76
lee2601c 20416 - 0.52 - -

newpuls 137808 0.58 0.60 0.60 0.54
sand 568864 - 0.84 - -

Table 1 Comparison of areas for the different controller architectures.
The areas of the stack, register, and decomposed architectures are rela
tive to that of the original architecture.

2 A mapping algorithm

217

To allow the designer to explore these architectures, an algorithm has been
developed that maps a control program expressed as an STG onto the different
architectures [23, 20]. This algorithm is divided into several steps. The first
step is architecture independent and consists of finding all factors in the STG.
A factor is a set of states (subsequences) that occurs at several places in a STG.
The second step is to filter out the factors that are compatible with the chosen
architecture. The last step is a heuristic algorithm for choosing the best factors
(in respect to area gain) from the set of compatible factors.

3 Results

Experiments have been performed on a number of examples [22] in order to
compare the area of the original FSM implementation (combinational logic and
state register) with the areas of implementations onto the four target architec
tures (including the area for registers and counters). In these experiments, the
combinational parts are implemented as multilevel logic using MIS [5] to opti
mize and map the logic onto the 2 p,m standard cell library Lib2 from MCNC.
The area of the multilevel implementation excludes routing. The results are
shown in table 1. The results are expressed relative to the original implemen
tation. As can be seen in the table, significant gains in area can be realized
by using different architectures for different CD programs. For a more detailed
study of implementation aspects, see section 3 [23, 20, 22].

The results for the different architectures can also be analyzed. There is a
tendency that the register architecture is good in many cases while the stack

www.manaraa.com

218 CHAPTER 10

architecture is less useful. This is explained by the low overhead of the reg
ister subroutine mechanism, which makes it suitable to a large range of CDs.
The stack mechanism has a larger overhead, but in CDs with many subrou
tines the advantage of this mechanism overcomes the larger overhead, and this
architecture outperforms the others (see e84tr_utan).

The decomposition architecture also has a relatively large overhead which
makes it less useful, but still, examples can be found where this architecture
outperforms the others (e.g., the example newpuls). There is also a clear benefit
in optimizing the combinational parts of the two machines together.

The choice of architecture also influences the maximum clock frequency of the
CD. This has not been analyzed in detail, but there is a clear tendency that
the delay is decreased as the area decreases. This is particularly true for PLA
implementations, but also standard cell implementations become faster as the
area decreases.

There is, of course, always a question about how good the heuristic algorithm
is compared to the optimal solution. The only result so far is an indication
that the mapping algorithm performs favorably compared to a human designer
in exploiting these architectures [231.

The CPU time of the mapping algorithm is fairly small and can be divided
into two parts. Finding the factors takes less than one second for all examples
on a Sun SPARCstation 2. The heuristic algorithm for selecting good factors
takes from under one second up to two minutes. This time is dependent on the
target architecture; the register architecture is the slowest.

3 ARCHITECTURE IMPLEMENTATION

Automatic synthesis of control units has been dominated by PLA implementa
tions, where boolean functions in the sum-of-product form are mapped onto an
array structure, or standard cell implementations, where the optimized logic
functions are mapped onto a predefined library of cells. As already mentioned,
an alternative to the fixed library is the use of cell compilers, which permit full
exploitation of the advantages of the optimized logic.

www.manaraa.com

Controller synthesis and verification 219

FSM PLA Standard Cells
Orig area Stack Register Orig area Stack Register

(J.Lm2
) (J.Lm2

)

dk512 - - - 174616 1.08 -

e84cd_utan 513131 1.05 0.91 2114444 0.69 -

ex451 77480 - 0.90 78720 1.26 -

jorgen_utan 633866 0.75 0.69 2247594 0.49 0.52
lee2601c 59300 - 0.76 62832 - -

newpuls 124624 1.00 0.85 232560 0.86 1.19
sse - - - 322524 0.96 -
visa_utan - - - 116272 0.98 -

Table 2 Results of PLA and standard cell implementation using a 21Jom
CMOS process. Both solutions have been implemented in the GDT en
vironment of Mentor Graphics. For the stack and register architectures,
the area relative to that of the original architecture is given.

1 PLA synthesis

Implementing the combinational part of a control architecture using a PLA is
very common. The synthesis onto PLAs is efficient and well understood; how
ever, the PLA structure is not very flexible, usually resulting in fixed speed and
an aspect ratio that cannot be varied. Furthermore, a multilevel implementa
tion will in many cases result in smaller and faster circuits.

The examples of table 1 have been synthesized through the two-level logic
optimizer Espresso [6], and implemented using a custom PLA generator built
in the GDT environment [9]. The results for the three architectures presented
in table 2 include the area for state registers, etc. For the stack and register
architectures, only the area relative to the original architecture is presented.

2 Synthesizing for standard cells

Using standard cells for implementation of the control architecture allows for
the implementation of both combinational and clocked elements. However, the
combinational part that is implemented as multilevel logic is separated in the
optimization step, and then afterwards merged with the clocked elements before
placement and routing.

www.manaraa.com

220 CHAPTER 10

a

b

Figure 3 Layout of the logic function f =9 . (a + (b + c) . (e . f + d)):
a) using two-input NAND gates; b) using a complex gate.

The examples of table 1 have been synthesized through the multilevel logic
optimizer MIS [5]. The targets have been to optimize for area and map onto a
2J.Lm standard cell library. The combinational logic together with registers are
then placed and routed using the Mentor Graphics tool AutoCell. The results
are included in table 2.

3 Synthesizing for compiled cells

Synthesis for compiled cells allows for generating any logic function as a single
composite gate. Thus, the advantages of such an approach is the ability to
combine several simple logic functions into one complex gate, thereby reducing
the area as well as fine-tuning each cell to meet both local and global constraints
such as timing aspects and interconnection considerations. An example can be
seen in figure 3.

Although a cell compiler is in principle capable of realizing an infinite library
of cells, it is in practice limited by the technology, Le., the stack size restric-

www.manaraa.com

Controller synthesis and verification 221

tion (N,P). The stack size is a parameter that indicates the maximum number
of series-connected NMOS and PMOS transistors, respectively. The motiva
tion for using compiled cells is partly the large number of different cells, even
for small stack size restrictions. For instance, a stack size restriction of (4,4)
may create 3.503 different cells, and one of (5,5) may produce 425.803 differ
ent cells, while a stack size restriction of (6,6) results in 154.793.519 different
cells. Furthermore, each logic function may be implemented by several different
cells, i.e., these cells are representing the same logic function but are topolog
ically different, which influences both area and performance. Even though a
logic function may be mapped onto a series/parallel transistor network using
a straightforward mapping, this mapping may not result in the best solution,
since the mapping of a logic function onto a series/parallel network is a one
to-many mapping. Thus, in order to fully exploit the capabilities of using cell
compilers, advanced mapping techniques have to be used. Such techniques for
technology mapping have only been addressed by a few researchers [4, 1].

An experimental system capable of synthesis for compiled cells has been built
by combining the flexible mapper FM [17] with the cell compiler CELLO [15].
The basic idea behind the mapper is to integrate the global transistor sizing
for performance with the step in multilevel logic synthesis that generates the
actual gate-level implementation, i.e., the technology mapping step. While this
integration is only to a limited degree possible in traditional semi-custom im
plementation of multilevel logic, it seems obvious to combine these two steps
when implementing multilevel logic using cell compilers. Such layout compilers
for full custom layout not only allow geometric level optimizations for area effi
ciency; they can also size transistors individually as well as change the topology
of the netlist. Changing the topology is only possible if no timing optimization
has been performed by the mapper, i.e., selecting transistor positions accord
ing to the arrival of critical signals and individually sizing transistors. These
aspects may be handled by the cell compiler through specifying the transistor
netlists as fixed or dynamic.

All the examples of table 1 have been synthesized through this experimental
synthesis system. A detailed description can be found elsewhere [16].

An important question about the compiled cells approach is whether it is likely
to find a sufficient number of complex gates to make the approach worthwhile.
The results from synthesizing the examples of table 1 using a stack size restric
tion of (3,3) have shown that using an advanced mapper does result in a high
number of complex gates, i.e., gates representing a logic depth larger than 2.

www.manaraa.com

222 CHAPTER 10

The number of complex gates were in the range of 11%-38% (22.8% on aver
age). Also, savings of 30% in both gate and transistor count using a stack size
restriction of (3,3) have been reported [1].

Influence of stack size restriction

The result produced by the compiled cell approach is very sensitive to the
stack size restriction (N,P). Results of synthesizing the examples of table 1
have shown that the stack size restriction has a significant impact on the re
sulting area [16]. The results from synthesis using three different stack size
restrictions-(3,3), (6,3), and (6,6)-have shown area savings in the range of
6%-27%. However, all of these examples were generated using fixed netlists,
i.e., netlists that had been optimized by the mapper. As argued previously, this
imposes severe restrictions on the cell compiler, resulting in cell areas that may
be far from optimum. This impact is of course dependent on the complexity of
the cells.

Dynamic netlists

In order to explore the effect of having dynamic netlists, some of the examples
were recompiled using the dynamic netlist option, allowing the cell compiler
to rearrange the netlist topology to obtain better area solutions. This results
in area savings in the range of 10%-20% compared to a fixed netlist. Thus,
selecting the right stack size restriction and being able to choose the right
transistor netlist topology may give area savings of 33%.

A comparison with the standard cell approach

Another important issue is how good these results are compared to the standard
cell solution. Table 3 shows a comparison of the best results from the different
(N,P) settings and a standard cell solution. Since different logic synthesizers
have been used, it is difficult to make a fair comparison between the two ap
proaches. However, it seems to be clear that the different methods produce
quite different results. There is a tendency that compiled cells produce better
results for the small benchmark examples. This may be because the cell com
piler used for generating results using fixed netlists does not allow feed-throughs
over the cells, an aspect that is very important in the larger examples. An
other aspect is that the place-and-route system is targeted toward standard
cells; thus, it is not able to utilize fully the advantage of the compiled cells,
e.g., pin swapping among all pins of a cell. Finally, it has to be noted that the

www.manaraa.com

Controller synthesis and verification

Area Area
FSM Standard cells Compiled cells

fixed dynamic

dk512 174616 1.04 0.87
e84cd_utan 2114444 1.11 1.12
ex451 78720 0.89 -

lee2601c 62832 0.76 -

newpuls 232560 1.08 1.06
visa_utan 116272 0.98 0.88

Table 3 Comparison of results from both standard cell and compiled
cell synthesis.

223

results produced by the place-and-route system in general are very sensitive to
the selected aspect ratio.

4 FORMAL VERIFICATION OF FINITE STATE

MACHINES

Even within an automatic synthesis environment, the role of verification should
not be underestimated: the synthesis programs are often rather complex and
likely to still contain some bugs. Moreover, when at some point a designer
interferes manually, the "correct-by-construction" claim might be violated. It
is therefore standard practice to check the outcome of synthesis against its
input. Until recently, simulation was the only means to establish, at least
partially, the correctness of a design. New approaches are offered by formal
verification methods. In contrast to simulation, these methods are able to
prove mathematically the equivalence of a specification and its implementation
in a reasonable time. Here, we will examine the possibilities of verifying finite
state machine (FSM) designs using a linear-time temporal logic called PTL
(propositional temporal logic).

A somewhat related approach that has been applied successfully is the so
called implicit enumeration technique [10] based on exploring the state space
in a breadth-first manner and thereby treating sets of states collectively. In
such a tool, sets of states are conveniently represented by a binary decision
diagram (BDD) data structure. However, it has been shown [8] that a proof
checker for PTL can be implemented using basically the same techniques, and

www.manaraa.com

224

<PTL-formula>
<impl-part>

<equiv-part>

<formula>

<term>

<factor>

<primary>

<atom>

<variable>

::= <formula> { <impl-part> I <equiv-part>
::= "_>" <formula>.

::= "<_>" <formula>.

::= <term> { "V" <term> }.

::= <factor> { ["-II] <factor> }.

::= <primary> { "u" <primary> }.

: := <atom> ["'"]
,,-to <primary>
"Cl" <primary>
"0" <primary>
" []" <primary>.

::= <variable>
I "True" I "False"
I "(" <PTL-formula> ")".

::= C-style identifier.

Figure 4 PTL program input syntax.

CHAPTER 10

} .
1* Implication *1
1* Equivalence *1

1* Or *1
1* And *1

1* Until *1
1* Not *1
1* Not *1

1* Next *1
1* Sometime *1

1* Always *1

we therefore feel that PTL is somewhat more versatile. We will show how FSMs
can be specified in terms of temporal logic formulas. In this way, a satisfiability
checker for temporal logic can be used to provide the answers.

1 Notational preliminaries

A finite state machine is a quintuple (Q, r;, 15, qo, F) with Q being a finite
nonempty set of states, r; the finite nonempty input alphabet, 15 the transi
tion mapping, qo a start state, and F the set of accepting states. In terms of
a logic circuit, we usually let the input symbols correspond to data bits on a
number of input lines and the states correspond to the values contained in the
registers. In hardware applications, it is customary to introduce two derived
machine concepts, known as the Moore and Mealy type machines. A (deter
ministic) Moore machine is described by a six-tuple (Q, r;, 8, Init, r, 1/», where
Init is a set of initial states, r the output alphabet, and I/> : Q - r the
output function. In a Mealy machine, outputs are associated with the edges
in the state diagram; so we have I/> : Q x r; - r. We will call a machine
incompletely specified if the 15 function is not fully defined over its domain of
states and symbols.

Figure 4 presents the syntax of the propositional temporal logic we use in
Backus-Naur form, and also hints at the intended semantics [13]. The truth of
a temporal formula is defined with respect to a so-called model, which is an

www.manaraa.com

Controller synthesis and verification 225

infinite sequence of states. Each state is characterized by a subset of atomic
propositions to be true in that state. The basic method to define a FSM in
temporal logic is to associate the states of the machine with the states in the
model, and let a transition coincide with a step in time. We will use typewriter
font to denote temporal formulas in the syntax accepted by our satisfiability
checker program. Names for states and symbols of a FSM will be written
in italic, using subscripts when appropriate. We prefer to leave the ~ (and)
operator of PTL implicit. An operator applied to a set of operands is to be
understood as the reduction of the operator over the operands: for example,
V{vd = VI V V2 V ... V Vn ·

2 Transformation from FSM to PTL

To describe a fully specified (deterministic) finite state machine without out
put in PTL, we first introduce a propositional variable for each input sym
bol and one for each state. Our interpretation for the variables is such that
when a variable is assigned true, that symbol (state) is the machine's cur
rent symbol (state); the symbols (states) are mutually exclusive. This may
be compared with a one-hot encoding scheme. In PTL, the mutual exclusion
of variables vO, v1, v2, ... , vo can be expressed by [] (v1 v2' ... vo' V
v1' v2 ... vo' V ... V v1' v2' ... vo) or in short-hand notation: [] E! (
v1, v2, v3, ... , vn).

Our 8 mapping in this case is a total function 8 : Q x ~ - Q. We write
a clause for each state/symbol pair: (Qi Ik -> ~<8(qi, ik»), where Qi is the
PTL variable corresponding to the state qi, Ik is the variable associated with
the input symbol ik' and <8(Qi, ik» stands for the PTL variable associated with
the result of the 8 function when applied to the arguments qi and ik. All these
clauses are and-ed together and put within an always operator. We are also
required to state explicitly that only one state variable is true at any time. As
above, we include a clause for the mutual exclusion of a set of variables.

The initial state of the machine (qo) can be expressed by the clause qO ql' q2'
... qn'. If necessary, we can introduce a PTL variable, say Accept, to denote
the fact that we are in a final state: [] (Accept <-> V<F».

To avoid having to explicitly specify the mutual exclusivity of the states, we can
use a predecessor approach in representing the 8 function, in the sense that we
define clauses (QQi <-> Vik (V<8- I (qi,ik» Ik)), where <8- I (qi,ik» de
notes the set of PTL variables corresponding to the states that have transitions
labeled ik ending in the state qi·

www.manaraa.com

226

Figure 5 Lion cage state diagram.

CHAPTER 10

Incompleteness of a machine is resolved by introducing a special state. When
ever {j is undefined in a state, we add edges labeled with the missing symbols
and directed toward that special state. The special state itself has an outgoing
transition for each input symbol ending on itself. In an incompletely specified
Mealy machine, the output function depends both on the current state and
the current input. We then need to add a clause for each binary output signal
stating for what state/input-conditions it is true.

Now we present some examples illustrating the method described above.

Lion cage

The lion cage machine is a simple four-state example [7]. Note that the 11=1,
12=0 transition for state bada is not specified. Also two transitions have output
don't cares (see figure 5).

/* State transition table (not fully specified): */
[]((~start <-> start (il' i2' V il i2' V il i2) V ett il i2)

(~ett (-> start il' i2 V ett (il' i2' V il' i2) V nasta il' i2')
(~nasta (-> ett il i2' V nasta (il i2' V il i2) V bada il i2)
(~bada (-> nasta il' i2 V bada (il' i2' V il' i2»)

/* Output function (not fully specified): */
[](VARNING' (- start (il' i2' V il i2' V il i2))

[](VARNING (- ett (il' i2' V il' i2 V il i2')
V nasta V bada (il' i2' V il' i2 V il i2)

/* Initial state: */ start ett' nasta' bada'

/* Input restriction: */ []-(bada il i2')

www.manaraa.com

Controller synthesis and verification 227

x

Figure 6 BCD recognizer.

BCD recognizer

The example of the four-bit BCD recognizer is taken from Pierre [19J. A pos
sible implementation is depicted in figure 6. It can be expressed in PTL as
follows:

1* The registers:
(~Y1 <-> Y7 V Y8)
(~Y2 <-> Y5 V Y6)
(~Y3 <-> Y2 V Y4)

*1 (Y1 <-> 0) (Y2 <-> 0) (Y3 <-> 0)

*1
Y3)
Y3')
Y3')
Y3')
Y3)
Y2' Y3)')
registers:

1* Input X; 4 bits form BCD sequence, most-significant last.
1* Output: z. *1
[](1* The logic:

(Y8 <-> X' Yl

(Y7 <-> X' Y2
(Y6 <-> Y1' Y2'
(Y5 <-> X Yl'

(Y4 <-> X Y1
(Z <-> (X Y1'

1* Initial state of

It is verified against a Moore state machine [19J:

1* States: so, S1. 52, 53, 54, 55, Success, Failure. *1
1* Inputs: X *1
1* Transition table (fully specified): *1
[]((~50 <-> False) (051 <-> SO V Success V Failure)

(~52 <-> 51 X') (~53 <-> 52 X')
(054 <-> 51 X) (055 <-> 52 X V 54)
(~5uccess <-> 53 V 55 X') (OFailure <-> 55 X)

1* Initial state: *1 SO 51' 52' 53' 54' 55' Success' Failure'

www.manaraa.com

228 CHAPTER 10

The equivalence test in this case is somewhat complicated; in fact, we are com
paring a Mealy machine implementation (the circuit) against a Moore machine
specification. In the circuit, Z is valid after the first three clock ticks and from
then on after every fourth tick. In the state machine, Success might be reached
after every fourth clock tick. We therefore introduce a simple modulo-four ring
counter to serve as a time base:

[]((eTO <-> T3) (~Tl <-> TO) (GT2 <-> Tl) (~T3 <-> T2))
1* Initial state: *1 TO Tl' T2' T3'

And-ing all PTL descriptions together must imply the following test: "At all
times when Z is valid, the machine's next state is either Success or Failure,
and it is Success when Z = 1, otherwise Failure," which is expressed as:
[](T3 <-> Z ~Success V ~Failure).

It took our program only 0.1 seconds (on an HP9000/S750 workstation) to
verify this statement. A 52 CMOS-transistor + 2 flip-flops circuit (not discussed
here) was verified against an l1-state Mealy machine in 1.1 seconds.

5 VERIFICATION OF IMPLEMENTATION

Verification of CU implementation against specification consists of proving that
the layout of the CU is functionally correct with respect to the specification.
The specification can be a state graph, and the implementation can be the
layout of a PLA and a set of state registers.

To be able to use mathematical proof techniques, some formalism for describ
ing both specification and implementation has to be used. PTL, described in
section 4, is one such formalism. In PTL, the specification is naturally de
scribed as an STG, but the implementation cannot be described directly as
layout. Instead, transistor netlist extraction is typically used to get a switch
level description of the circuit layout. This type of description still has the
disadvantage of containing too many electrical properties. A verification tool
starting from this description must be able to understand domino logic, pseudo
NMOS, dynamic storage elements, asynchronous circuits, etc.

A description more suitable for formal verification is a combination of boolean
equations and state registers (see the BCD recognizer example in section 4). To
derive such a description from layout is not a trivial task, however, and is the
topic of this section. A more extensive description of the algorithms described
can be found elsewhere [3].

www.manaraa.com

Controller synthesis and verification

1 Extracting logic equations and memory elements

229

A transistor network can be seen as consisting of clocked memory elements
and combinational logic, which can be described as logic equations. Extracting
these equations can be done by constructing a boolean expression for each
node in the transistor network that fully describes the state of that node. This
expression can be found by traversing all transistor paths from the node to Vdd
and Gnd, thereby finding the conditions for the node being driven high or low.

If a small number of restrictions are put on the implementation, it is also
possible to identify storage elements using the extracted logic equations. The
restrictions are basically that the transistor network should be synchronously
clocked and free from race conditions, restrictions that are met in most designs.

The memory elements are identified in the equations by characteristics common
to all memory elements. The first criterion is that the loading of a value into a
memory element must be controlled by the clock; the second, that the element
must retain its value when not clocked. Whether a node is controlled by the
clock is easily determined in the node equation. The second criterion is true if
the node equation contains a reference to the node itself, and this self reference
is enabled by the clock. Having identified clocked memory elements, a partition
of the net into memory elements and strictly combinational parts can be found.
From this information, a description in PTL can easily be derived.

2 Closing the design loop

The method described above was implemented and verified on a variety of test
examples. These examples were implemented with different module generators
and cell libraries, representing a variety of design styles, thereby showing the
feasibility of the method using real design examples [3]. Using this tool in
combination with the PTL verifier, it is possible to close the design loop as
indicated in figure 1. Automatic verification of control unit implementation
from STG specifications all the way to layout is a reality [21].

www.manaraa.com

230 CHAPTER 10

6 CONCLUSION

Exploring the design space both at a high level, such as the presented architec
ture exploration, and at a lower level, such as in the compiled cell approach, has
been shown to give significant gains in implementation area as well as in timing.
Combined with the formal verification method, a reliable control unit synthe
sis system can be built that better meets the demands of high-level synthesis
systems.

REFERENCES

[1] P. Abouzei, R. Leveugle, and G. Saucier. Logic synthesis for automatic
layout. In Proceedings of the WG 10.5 IFIP Workshop on Synthesis, Gen
eration and Portability of Library Blocks for ASCIS Design, Grenoble,
France, pages 139-147, Mar 1992.

[2] R. Amann and U. G. Baitinger. New state assignment algorithms for fi
nite state machines using counters and multiple-PLA/ROM structures. In
Proc. of the IEEE International Conference on Computer-Aided Design,
ICCAD-87, Santa Clara, CA, 1987.

[3] P. Andersson and K. Ranerup. Sequential logic extraction from
CMOS transistor networks. Technical report, Esprit project BRA 3281,
LV/m24/E1/2.

[4] M. R. C. M. Berkelaar and J. A. G. Jess. Technology mapping for standard
cell generators. In Proceedings of the IEEE International Conference on
Computer-Aided Design, ICCAD-88, Santa Clara, CA, 1988.

[5] R. K. Brayton et al. Multiple-Level Logic Optimization System. In Pro
ceedings of the IEEE International Conference on Computer-Aided Design,
ICCAD-86, Santa Clara, CA, 1986.

[6] R. K. Brayton, G. D. Hachtel, C. McMullen, and A. L. Sangiovanni
Vincentelli. Logic minimization algorithms for VLSI synthesis. Kluwer
Academic Publishers, 1984.

[7] B. Breidegard. Private communication. Lund University, Sweden, Oct
1989.

[8] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. 1991 International
Workshop on Formal Methods in VLSI Design.

www.manaraa.com

Controller synthesis and verification 231

[9] Misha R. Burich. Design of module generators and silicon compilers. In D.
Gajski, editor, Silicon Compilation, Addison-Wesley, 1988.

[10] O. Coudert, C. Berthet, and J. C. Madre. Formal boolean manipulations
for the verification of sequential machines. In Proc. European Design Au
tomation Conference, Glasgow, Scotland, pages 57-61, Mar 990.

[11] G. De Micheli. Synthesis of control systems. In G. De Micheli, A.
Sangiovanni-Vincentelli, and P. Antognetti, editors, Design systems for
VLSI Circuits, Logic Synthesis and Silicon Compilation, Martinus Nijhoff,
pages 327-364, 1987.

[12] S. Devadas and A. R. Newton. Decomposition and factorization of sequen
tial finite state machines. In Proc. of the IEEE International Conference
on Computer-Aided Design, ICCAD-88, Santa Clara, CA, 1988.

[13] G. L. J. M. Janssen. Hardware verification using temporal logic: a prac
tical view. In L. J. M. Claesen, editor, Formal VLSI Correctness Verifi
cation, VLSI Design Methods-II, Elsevier Science Publishers B.V. (North
Holland), pages 159-168, 1990.

[14] J. Kukula and S. Devadas. Finite state machine decomposition by transi
tion pairing. In Proc. of the IEEE International Conference on Computer
Aided Design, ICCAD-91, Santa Clara, CA, 1991.

[15] J. Madsen. A New Approach to Optimal Cell Synthesis. In Proceedings of
the IEEE International Conference on Computer-Aided Design, ICCAD
89, Santa Clara, CA, pages 336-339, 1989.

[16] J. Madsen and B. Hald. Controller Synthesis using Compiled Cells. In
Proceedings of the Tenth NORCHIP Seminar, Helsinki, Finland, pages
36-43, Nov.1992.

[17] H. Pallisgaard. Principles of technology mapping for CMOS functional
cell generators. In Proceeding of the ASCIS Open Workshop on Controller
Synthesis, Technical University of Denmark, Lyngby, Denmark, Sep 1991.

[18] H. Pallisgaard, O. C. Andersen, L. Linqvist, and J. Madsen. Controller
synthesis in Gaia, a VHDL RT-Ievel framework. In Proceedings of the
Second European Conference on VHDL Methods, EUROVHDL-91, Stock
holm, Sweden, pages 78-85, Sep 1991.

[19] L. Pierre. The formal proof of sequential circuits described in CASCADE
using the Boyer-Moore theorem prover. In L. J. M. Claesen, editor, Formal
VLSI Correctness Verification, VLSI Design Methods-II, Elsevier Science
Publishers B.V. (North-Holland), pages 309-328, 1990.

www.manaraa.com

232 CHAPTER 10

[20] K. Ranerup. Control architecture selection from state graph characteris
tics. In Proceeding of the ASClS Open Workshop on Controller Synthesis,
Technical University of Denmark, Lyngby, Denmark, Sep 1991.

[21] K. Ranerup. Proving functional correctness of control unit layout in sili
con compilation environments. Technical report, Esprit project BRA 3281,
LU/m30/E1/4.

[22] K. Ranerup and J. Madsen. Comparision of logic synthesis methods in
control unit architecture synthesis. Technical report, Esprit project BRA
3281, CD/m30/E1-E2/1.

[23] K. Ranerup and L. Philipson. Optimization of finite state machines using
subroutines. Technical report, Department of Computer Engineering, Lund
University, Sweden, 1989.

www.manaraa.com

Access scheme, 151
Addressing cost, 151
Affine functions, 150
Affine recurrence equations

conditional, 120
Affine scheduling, 136
Affine timing function, 136
Affine transformation, 120, 153
Algebraic path problem, 9, 47
Allocation function, 102
Allocation, 172, 195-196, 203

connection, 200
functional unit, 200
memory, 151
module, 36

Alpha du Centaur, 128
Alpha, 123
AMICAL, 12, 191
APOLLON, 200
APP, 47

systolic array for, 50
Application-specific system, 2, 96
Application-specific units, 144
Applicative state transitions, 76
Architecture style, 4

lowly multiplexed, 13
multiplexed processor, 12, 144
regular array, 9, 97, 110, 120

Architecture
controller, 213
counter, 216
decomposed, 216
evaluation, 203, 206
exploration, 196
generation, 196, 201

INDEX

highly multiplexed, 176
multiplexed processor, 6, 12
register, 216
regular array, 6, 47, 71, 95, 97,

102,119
stack, 214
validation, 196, 202

ARE, 120
Array

accesses, 199
address computation, 181
compression, 63, 180
merging, 18D-181
partitioning, 11, 139
removal, 179
reorientation, 181
type selection, 181

ASIC emulator board, 167
Assignment

ASU, 159
CBB,187
processor, 85

AST node, 76
ASU, 144, 199

definition, 160
AutoCell, 220
BDD, 223
Behavioral specification, 24
Binary decision diagram, 223
Binding, 36, 145, 172, 186

interconnection, 186
memory, 187

Bit-level
algorithm, 109
array design, 108

www.manaraa.com

234 ApPLICATION-DRIVEN ARCHITECTURE SYNTHESIS

parallelism, 11, 108
systolic arrays, 11, 97

Block pipelining period, 120
BPP,120
Broadcast operations, 58, 61, 99,

120, 125
CARE, 120
Cathedral, 140
Cathedral-3, 143, 199
CBB,174
Cell compiler, 218, 220
Cello, 221
Chaining, 184-185, 199
Clique partitioning, 187
Cluster

compatibility, 159
similarity, 159

Clustering, 62, 72, 88, 120, 139
Communicating sequential processes,

77
Component placement, 200
Condition vector, 185
Conditional affine recurrence equa

tions, 120
Conditional execution, 11
Conditional weak single assignment

codes, 120
Constant propagation, 177
Control graph, 35
Control unit, 213
Control-flow hierarchy, 144
Control-flow scope, 124
Control-flow-dominated, 12, 192, 199,

204
CORAL II, 197
CSP,77
CTG,35
CU,213
CURE,120
CWSAC,120
Data analysis application, 50
Data flow analysis, 27

Data flow graph, 24-25
Data token, 26
Data-dependent iterations, 13
Data-flow-dominated, 12, 72, 95, 121,

143
Data-path mapping, 156
Dead-code elimination, 177
Definition space, 149
Delay

node, 27, 33
operator, 38

Dependence
graph, 55, 72, 74, 99, 136
loop, 136
relation, 79
vector, 99
vectors, 133

Design cycle, 3
Design trajectory, 56, 97, 120
Development cost, 3
DFG,25

behavior, 26, 34
conditional construct, 25
constants, 27, 31
data edges, 26
data types, 26
execution, 26, 33
hierarchy, 27
if-then-else, 27, 29
input/output operations, 26, 31
instantiation, 28, 33
loop construct, 25, 27, 30, 33
node types, 27
optimizer, 170
procedures, 27-28, 33
sequence edge, 26
syntax, 34
timing, 34
transformation, 157

DG, 56, 72, 99, 136
node, 80

Distribution graph, 182

www.manaraa.com

Index

Domain
node, 79
port, 79

EMUCS, 200
Espresso, 219
Example

answering machine controller, 204
auto-correlation, 146
BCD recognizer, 227
binary relation, 49
bubble-sort, 201
combustion engine control, 173-

174
convolution, 101, 107
DHRC, 173-174
elliptic filter, 173
Floyd-Steinberg, 74
JPEG encoder/decoder, 43
lion cage, 226
Mandelbrot, 43
matrix inversion, 49
motion estimation, 121-122
shortest distance in graph, 49
state variable filter, 173
volume stream measurement, 173
waveform generator, 209
YUV-RGB conversion, 156

Exception handling, 205
Extraction

logic equations, 229
transistor netlist, 228

Fan-in, 99
Feedback variable, 98
Finite state machine, 224
Flow graph transformation, 11
Floyd-Steinberg algorithm, 74
FM,221
Formal verification, 7-8, 24, 223,

228
FPGA, 175
FSM, 209, 224

decomposition, 214

235

incompletely specified, 226
FU, 192-193, 198
Functional language, 123
Functional unit, 192-193, 198
Gauss-Jordan diagonalization, 48
GDT, 219
Genetic algorithms, 14
Global operations, 120, 125
Global optimization, 13, 25
Hardware simulator, 168
Hardware utilization, 182
Hardware-sharing factor, 145, 172
HardwareC, 24, 38, 170

compiler, 170
Hermite form, 64
Host interface, 174
HSF, 145, 172
HYPER, 145
I/O management, 179
ILP optimization, 152
Imperative nested loops, 96
In-place storage, 151
Independent variable subsets, 102
Index

space, 98, 149
vector, 98

Inner product step processor, 112
Interleaved data streams, 179
IPSP,112
Iteration space, 98
Language

requirements, 37
semantics, 37

Latency-limited applications, 53
Lifetime analysis, 177
Localization, 59, 99, 120, 125

graph,133
model,129

Logic optimization, 213
Loop

folding, 182
transformation, 95, 148

www.manaraa.com

236 ApPLICATION-DRIVEN ARCHITECTURE SYNTHESIS

unfolding, 170
LPGS, 62, 89
LSGP, 62,89
LV decomposition, 50
M-D signals, 146
MAC, 112
ME, 121
Mealy machine, 224
Mechatronic

applications, 167
systems, 168

Memory
access conflicts, 181
allocation, 151
background, 177
binding, 187
foreground, 177
management, 144, 146, 177

MIES, 198
Minimum distance, 103
MIS, 220
Model checking, 24
Moore machine, 224
Motion estimation, 121
Multidimensional scheduling, 135
Multidimensional signals, 144, 146
Multidimensional time vector, 134
Multiply-accumulate, 112
Mutual exclusion

in PTL, 225
of operations, 185

Nested loop program, 74, 80, 95
Netlist

dynamic, 221-222
fixed, 221

Network graph, 35
Neural network solvers, 14
NLP, 74,80
Node

domain, 79
placement, 125
space, 125, 149

Null-space propagation, 127
NWG,35
One-hot encoding, 225
Operand

collision, 186
space, 149

Operation
clustering, 157
mobility, 182

Operational unit, 175
Optimization

DFG,176
synthesis, 176

Ordering vector, 151
Parametrization, 71, 102, 194
Partial design, 194
Partitioning, 62, 72, 88, 168, 182,

186, 196
array, 11, 139

PDG, 124, 149
PE, 86, 96, 134

utilization, 105
Performance estimates, 167
PHIDEO, 145
Piece-wise regular algorithms, 72
Pipeline balancing, 161
Pipelining, 27, 184

software, 182
PLA, 218-219
Polyhedral dependence graph, 124,

149
Port

adaptors, 90
domain, 79

Procedural interpretation, 151
Procedural languages, 123
Process interface, 174
Processing element, 86, 96, 134
ProcVHDL, 40, 199
Projection matrix, 85
Propagation space, 99, 127
Propositional temporal logic, 223

www.manaraa.com

Index

PTL,223
RAA,119
Rapid prototyping, 13, 168
Rate transformations, 157
Re-indexing, 57, 121, 124
Real-time processing, 1, 53, 95, 119,

121, 143
Real-time test runs, 172
Recurrence equations

affine, 120
uniform, 55, 85, 96, 120

Recurring state sequences, 214
Redundancy removal, 177
Regular iterative algorithms, 96
Regularization, 86
Residue number system, 97, 112
RIA,96
RNS, 97,112
Routing network, 174
RPL,168
Satisfiability checker, 224
Schedule vector, 85
Scheduling, 36, 57, 172, 183, 195-

197
affine, 136
ASAP, 200
basic block, 185
cluster, 161
dynamic loop, 199
force-directed, 182
list, 181, 184
manual, 203
micro-, 195, 200
microcode, 184
modification, 208
path-based, 185, 199
pipelined, 145

Sequence token, 26
SFG, 72, 125
Signal flow graph, 72, 125
SIL,33
Silage, 24, 38

237

Simulation
for memory management, 181
mixed-level, 40
post-synthesis, 196
pre-synthesis, 196

Single assignment model, 123
SOLAR,201
Space vector, 134
Space-time minimality, 53
Space-time transformation, 11, 55,

85, 89, 102, 120, 134
Specification languages, 24
Specification

behavioral, 24
language, 10
languages, 24
model, 4,7
system-level, 196

Standard cells, 218-219, 222
State assignment, 213
State repetition, 216
State transition graphs, 214
STG,214

decomposition, 216
factors, 217

Storage scheme, 151
Stream model, 125
Subroutines, 214
Synthesis

behavioral, 4, 170, 176, 191
controller, 6,14,211
domain-specific tools, 4
highly multiplexed processor, 13
lowly multiplexed processor, 13
micro-architecture, 191
regular array, 10, 47, 73, 95-96,

102,119
script, 172
structural, 3, 172, 183
techniques, 6

Systolic array, 85, 96, 123, 136
bit-level, 11, 97

www.manaraa.com

238 ApPLICATION-DRIVEN ARCHITECTURE SYNTHESIS

Target architecture, 172, 174
Tile, 88

graph,88
Tiling, 72
Time multiplexing, 184
Time-to-market, 3
Timing constraints, 38
Timing function, 102
Token flow, 25-26
Token queue, 26
Transformation

affine, 120, 153
broadcast, 61
clustering, 139
flow graph, 11, 176
FSM to PTL, 225
interactive, 128
localizing, 125
loop, 95, 148
matrix, 137
rate, 157
re-indexing, 124
space-time, 11, 55, 85, 89, 102,

120, 134
synthesis, 170, 176

Transistor stack size, 221-222
Transition table, 197, 199
Tree balancing, 170
Tseng heuristic, 187
Two-level processor arrays, 95
Uniform recurrence equations, 55,

85, 96, 120
conditional, 120

URE, 55, 85, 96-97, 99, 120
User interaction, 4, 123, 128
Variable instance, 98
Vector processing, 2
VHDL, 24, 38, 192

ProcVHDL subset, 40
subset for AMICAL, 199

Wavefront processor array, 85
Weak single assignment code, 96

Window calculation, 154
Word-level parallelism, 11, 96
WSAC, 96, 98, 120

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

